Geothermal Systems and Models

  • Robert Bowen

Abstract

In Chapter 1 the origin of the heat of the Earth has been discussed and it is now possible to proceed to examine localized accumulations, that is to say geothermal systems. The word ‘geothermal’ refers to the thermal energy of the planetary interior and it is usually associated with the concept of systems in which there is a large enough reservoir of heat to comprise energy sources. It is important to indicate that only these are significant for human needs. This is because, while the Earth comprises a vast heat source, most of the heat is either too diffuse or too deeply buried to permit economic exploitation.

Keywords

Rayleigh Number Relative Permeability Hydrothermal System Surface Heat Flux History Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rybach, L., 1981. Geothermal systems, conductive heat flow, geothermal anomalies. In: Geothermal Systems: Principles and Case Histories, pp. 3-31, ed. L. Rybach and L. J. P. Muffler. John Wiley & Sons, Chichester, 359 pp.Google Scholar
  2. 2.
    Sass, J. H. and Munroe, R. J., 1974. Basic Heat-Flow Data from the United States, US Geol. Surv., Open-file Rept, pp. 74–9.Google Scholar
  3. 3.
    Chapman, D. S., Pollack, H. N. and Cermak, V., 1979. Global heat flow with special reference to the region of Europe. In: Terrestrial Heat Flow in Europe, ed. V. Cermak and L. Rybach, pp. 41–8. Springer-Verlag, Berlin.Google Scholar
  4. 4.
    Fanelli, M. and Taffi, L., 1980. Status of geothermal research and development in the world. Revue de l’Institut Français du Pétrole, XXXV, 429–48.Google Scholar
  5. 5.
    Garg, S. K. and Kassoy, D. R., 1981. Convective heat and mass transfer in hydrothermal systems. In: Geothermal Systems: Principles and Case Histories, ed. L. Rybach and L. J. P. Muffler, pp. 37–76. John Wiley & Sons, Chichester, 359 pp.Google Scholar
  6. 6.
    Donaldson, I. G. and Grant, M. A., 1981. Heat extraction from geothermal reservoirs. In: Geothermal Systems: Principles and Case Histories,ed. L. Rybach and L. J. P. Muffler, pp. 145–79. John Wiley & Sons, Chichester, 359 pp.Google Scholar
  7. 7.
    White, D. E., Muffler, J. L. P. and Truesdell, A. H., 1971. Vapor-dominated hydrothermal systems compared with hot water systems. Econ. Geol., 66,75–97.CrossRefGoogle Scholar
  8. 8.
    Jessop, A. M. and Lewis, T., 1978. Heat flow and heat generation in the Superior Province of the Canadian Shield. Tectonophysics, 50, 55–75.CrossRefGoogle Scholar
  9. 9.
    Lumb, J. T., 1981. Prospecting for geothermal resources. In: Geothermal Systems: Principles and Case Histories, ed. L. Rybach and L. J. P. Muffler, pp. 77–108. John Wiley & Sons, Chichester, 359 pp.Google Scholar
  10. 10.
    Nakamura, H. and Sumi, K., 1981. Exploration and development at Takinoue, Japan. In: Geothermal Systems: Principles and Case Histories, ed. L. Rybach and L.J.P. Muffler, pp.247–72. John Wiley & Sons, Chichester, 359pp.Google Scholar
  11. 11.
    Stefánsson, V., 1981. The Krafla geothermal field, northeast Iceland. In: Geothermal Systems: Principles and Case Histories, ed. L. Rybach and L. J. P. Muffler, pp. 273–94. John Wiley & Sons, Chichester, 359 pp.Google Scholar
  12. 12.
    Garnish, J. D., Vaux, R. and Fuller, R. W. E., 1986. Geothermal Aquifers, ed. R. Vaux. Energy Technology Support Unit, AERE, Harwell, Oxfordshire 0X11 ORA, UK, 109 pp. and 6 appendices.Google Scholar
  13. 13.
    Wallace, R. H., Kraemer, T. F., Taylor, R. E. and Wesselman, J. B., 1979. Assessment of geopressurized-geothermal resources in the northern Gulf of Mexico basin. In: Assessment of Geothermal Resources of the United States— 1978, ed. L. J. P. Muffler. US Geol. Surv. Circ, No. 790, pp. 132–55.Google Scholar
  14. 14.
    Swanberg, C. A. and Morgan, P., 1978. The linear relation between temperatures based on the silica content of groundwater and regional heat flow: a new heat flow map of the United States. Pure Appl. Geophys., 117, 227–41.CrossRefGoogle Scholar
  15. 15.
    Wohlenberg, J. and Haenel, R., 1978. Kompilation von Temperatur-Daten für den Temperatur-Atlas der Bundesrepublik Deutschland. Statusreport 1978—Geotechnik und Lagerstätten, Projektleitung Energieforschung, KFA (Nuclear Research Centre), Jülich, pp. 1–12.Google Scholar
  16. 16.
    D’Amore, F. and Panichi, G, 1980. Evaluation of deep temperatures of hydrothermal systems by a new gas thermometer. Geochim. Cosmochim. Acta, 44, 549–56.CrossRefGoogle Scholar
  17. 17.
    Bullard, E., 1973. Basic theories. In: Geothermal Energy, ed. H. C. H. Armstead. The UNESCO Press, Paris.Google Scholar
  18. 18.
    Wittke, W., 1973. General report on the symposium ‘Percolation through fissured rock’. Bull. Internat. Assn Eng. Geol., Krefeld, 7, 3–28.CrossRefGoogle Scholar
  19. 19.
    Louis, C, 1970. Water Flows in Fissured Rocks and their Effects on the Stability of Rock Massifs. Lawrence Livermore Laboratory, Livermore, CA, USA, Report UCRL-Trans-10469 (English translation of a dissertation from the University (TH) of Karlsruhe, FRG, 1967.Google Scholar
  20. 20.
    Noorishad, J., Witherspoon, P. A. and Brekke, T. L., 1971. A Method for Coupled Stress and Flow Analysis of Fractured Rock Masses.University of California at Berkeley, California, USA, Report No. 71–6.Google Scholar
  21. 21.
    Gray, W. G., O’Neill, K. and Pinder, G. F., 1976. Simulation of heat transport in fractured, single-phase geothermal reservoirs. Summaries Second Workshop Geothermal Reservoir Engineering, Stanford University, Stanford, California, USA, pp. 222–8.Google Scholar
  22. 22.
    Pritchett, J. W., Garg, S. K., Brownell, D. H. Jr, Rice, L. F., Rice, M. H., Riney, T. D. and Hendrickson, R. R, 1976. Geohydrological Environmental Effects of Geothermal Power Production—Phase IIA. Systems, Science and Software, La Jolla, CA, USA, Report SSS-R-77–2998.CrossRefGoogle Scholar
  23. 23.
    Brownell, D. H. Jr, Garg, S. K. and Pritchett, J. W., 1977. Governing equations for geothermal reservoirs. Water Resources Res., 13, 929–34.CrossRefGoogle Scholar
  24. 24.
    Garg, S. K. and Pritchett, J. W., 1977. On pressure-work viscous dissipation and the energy balance relation for geothermal reservoirs. Adv. Water Resources, 1, 41–7.CrossRefGoogle Scholar
  25. 25.
    Ramey, H. J. Jr, Brigham, W. E., Chen, H. K., Atkinson, P. G. and Arihara, N., 1974. Thermodynamic and Hydrodynamic Properties of Hydrothermal Systems. Stanford Geothermal Programme Report SGP-TR-6, Stanford University, Stanford, CA, USA.Google Scholar
  26. 26.
    Garg, S. K, Pritchett, J. W., Rice, M. H. and Riney, T. D., 1977. US Gulf Coast Geopressurized Geothermal Reservoir Simulation. Systems, Science and Software, La Jolla, CA, USA, Report SSS-R-77–3147.Google Scholar
  27. 27.
    Keenan, J. H., Keyes, F. G., Hill, P. G. and Moore, J. G., 1969. Steam Tables. International Edition—Metric Units. John Wiley & Sons, New York.Google Scholar
  28. 28.
    Morrison, H. L., Rogers, F. T. Jr and Horton, C. W, 1949. Convection currents in porous media—II. Observations of conditions at onset of convection. J.Appl. Phys., 20, 1027–9.CrossRefGoogle Scholar
  29. 29.
    Kassoy, D. R. and Zebib, A., 1975. Variable viscosity effects on the onset of convection in porous media. Physics of Fluids, 18, 1649–51.CrossRefGoogle Scholar
  30. 30.
    Wooding, R. A., 1957. Steady-state free thermal convection of liquid in a saturated permeable medium. J. Fluid Mech., 2, 273–85.CrossRefGoogle Scholar
  31. 31.
    Straus, J. M. and Schubert, G, 1977. Thermal convection of water in a porous medium: effects of temperature- and pressure-dependent thermodynamic and transport properties. J. Geophys. Res., 82, 325–33.CrossRefGoogle Scholar
  32. 32.
    Morland, L. W, Zebib, A. and Kassoy, D. R., 1977. Variable property effects on the onset of convection in an elastic porous matrix. Physics of Fluids, 20, 1255–9.CrossRefGoogle Scholar
  33. 33.
    Zebib, A. and Kassoy, D. R., 1976. Onset of natural convection in a box of water-saturated porous media with large temperature variation. Physics of Fluids, 20, 4–9.CrossRefGoogle Scholar
  34. 34.
    Rogers, F. T. Jr and Morrison, H. L., 1950. Convection currents in porous media—III. Extended theory of critical gradients. J. Appl. Phys., 21, 1177–80.CrossRefGoogle Scholar
  35. 35.
    Wooding, R. A., 1976. Influence of Anisotropy and Variable Viscosity upon Convection in a Heated Saturated Porous Layer. New Zealand Dept of Scientific and Industrial Research, Tech. Rept No. 55.Google Scholar
  36. 36.
    Donaldson, I. G., 1962. Temperature gradients in the upper layers of the Earth’s crust due to convective water flows. J. Geophys. Res., 67, 3449–59.CrossRefGoogle Scholar
  37. 37.
    Sorey, M. L., 1975. Numerical Modelling of Liquid Geothermal Systems, US Geol. Surv., Open-file Rept 75–613.Google Scholar
  38. 38.
    Rana, R, Horne, R. N. and Cheng, R, 1979. Natural convection in a multi- layered geothermal reservoir. J. Heat Transfer, 101, 411–16.CrossRefGoogle Scholar
  39. 39.
    Ribando, R. J. and Torrance, K. E., 1976. Natural convection in a porous medium: effects of confinement, variable permeability, and thermal boundary conditions. J. Heat Transfer, 98, 42–8.CrossRefGoogle Scholar
  40. 40.
    Caltagirone, J. R, 1975. Thermoconvective instabilities in a horizontal porous layer. J. Fluid Mech., 72, 269–87.CrossRefGoogle Scholar
  41. 41.
    Straus, J. M. and Schubert, G, 1978. On the existence of three-dimensional convection in a rectangular box of fluid-saturated porous material. J. Fluid Mech., 87, 385–94.CrossRefGoogle Scholar
  42. 42.
    Zebib, A. and Kassoy, D. R, 1978. Three-dimensional natural convection motion in a confined porous medium. Physics of Fluids, 21, 1–3.CrossRefGoogle Scholar
  43. 43.
    Straus, J. M. and Schubert, G., 1979. Three-dimensional convection in a cubic box of fluid-saturated porous material. J. Fluid Mech., 91, 155–66.CrossRefGoogle Scholar
  44. 44.
    Einarsson, T., 1942. The nature of the springs of Iceland. Rit. Visind. Isl., 26, 1–92 (German text).Google Scholar
  45. 45.
    Elder, J. W., 1966. Heat and Mass Transfer in the Earth: Hydrothermal Systems. New Zealand Department of Scientific and Industrial Research Bulletin No. 169.Google Scholar
  46. 46.
    Donaldson, I. G., 1968. A possible model for hydrothermal systems and methods of studying such a model. Proc. Third Australasian Conf. on Hydraulics and Fluid Mechanics, pp. 200–4.Google Scholar
  47. 47.
    Cheng, R, 1978. Heat transfer in geothermal systems. In: Advances in Heat Transfer, ed. T. F. Irvine Jr and J. R Hartnett, pp. 1–105. Academic Press, New York.Google Scholar
  48. 48.
    Norton, D. and Knight, J., 1977. Transport phenomena in hydrothermal systems: cooling plutons. Am. J. Sci., 277, 937–81.CrossRefGoogle Scholar
  49. 49.
    Norton, D., 1978. Sources, sourceregions and pathlines for fluids in hydrothermal systems related to cooling plutons. Econ. Geol., 73, 21–8.CrossRefGoogle Scholar
  50. 50.
    Cathles, L. M., 1977. An analysis of the cooling of intrusives by ground-water convection which includes boiling. Econ. Geol., 72, 269–387.CrossRefGoogle Scholar
  51. 51.
    Kassoy, D. R. and Zebib, A., 1978. Convection fluid dynamics in a model of a fault zone in the Earth’s crust. J. Fluid Mech., 88, 769–82.CrossRefGoogle Scholar
  52. 52.
    Turcotte, D. L., Ribando, R. J. and Torrance, K. E., 1977. Numerical calculation of two-temperature thermal convection in a permeable layer with application to the Steamboat Springs thermal system, Nevada. In: The Earth’s Crust, ed. J. G. Heacock. Geophysical Monograph 20, American Geophysical Union, Washington, DC, USA, pp. 722–36.CrossRefGoogle Scholar
  53. 53.
    Goyal, K. P. and Kassoy, D. R, 1977. A fault-zone controlled model of the Mesa anomaly. Proc. Third Workshop Geo thermal Reservoir Engineering, Stanford University, Stanford, CA, USA, pp. 209–13.Google Scholar
  54. 54.
    Goyal, K. P., 1978. Heat and Mass Transfer in a Saturated Porous Medium with Application to Geothermal Reservoirs. PhD Thesis, Mechanical Engineering Department, University of Colorado, Boulder, CO, USA.Google Scholar
  55. 55.
    Sorey, M. L., 1976. A model of the hydrothermal system of Long Valley, Caldera, California. Summaries Second Workshop Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, pp. 324–38.Google Scholar
  56. 56.
    Riney, T. D., Pritchett, J. W. and Garg, S. K., 1977. Salton Sea geothermal reservoir simulations. Proc. Third Workshop Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, pp. 178–84.Google Scholar
  57. 57.
    Mercer, J. W. and Faust, C, 1979. Geothermal reservoir simulation. Ill: Application of liquid- and vapor-dominated hydrothermal techniques to Wairakei, New Zealand. Water Resources Res., 15, 653–71.CrossRefGoogle Scholar
  58. 58.
    Noble, J. W. and Ojiambo, S. B., 1975. Geothermal exploration in Kenya. Proc. 2nd UN Symposium on the Development and Use of Geothermal Resources, San Francisco, CA, USA, 20–29 May 1975.Google Scholar
  59. 59.
    Svanbjörnsson, A., Mathiasson, J., Frimmannsson, H., Arnorsson, S., Björnsson, S., Stefánsson, V. and Saemundsson, K, 1983. Overview of geothermal development at Olkaria in Kenya. Presented at the Ninth Workshop on Geothermal Resource Engineering, Stanford University, Stanford, CA, USA, 13–15 December 1983.Google Scholar
  60. 60.
    Bodvarsson, G. S., Pruess, K, Stefánsson, V. and Björnsson, S., 1987. East Olkaria geothermal field, Kenya. 1: History match with production and pressure decline data. J. Geophys. Res., 92(B1), 521–39.CrossRefGoogle Scholar
  61. 61.
    Grant, M. A. and Whittome, A. J., 1981. Hydrology of Olkaria geothermal field. New Zealand Geothermal Workshop, Geothermal Institute, University of Auckland, Auckland, New Zealand.Google Scholar
  62. 62.
    Kenya Power Co. Ltd, 1984. History Match and Performance Predictions for the Olkaria Geothermal Field, Kenya. Report prepared by G. S. Bodvarsson and K. Pruess for Merz and McLellan and Virkir Ltd, Nairobi, Kenya.Google Scholar
  63. 63.
    Sorey, M. L., Grant, M. A. and Bradford, M., 1980. Nonlinear effects in two- phase flow to wells in geothermal reservoirs. Water Resources Res., 16(4), 767–77.CrossRefGoogle Scholar
  64. 64.
    Grant, M. A., 1977. Permeability reduction factors at Wairakei. Presented at Heat Transfer Conference, Am. Inst, of Chem. Eng./Am. Soc. Mech. Eng., Utah, USA, 15–17 August 1977.Google Scholar
  65. 65.
    Pruess, K, 1983. Development of the general purpose simulator MULKOM. In: 1982 Ann. Rept, Earth Sci. Div., Lawrence Berkeley Lab., Berkeley, CA, USA, pp. 133–4.Google Scholar
  66. 66.
    International Formulation Committee, 1967. The Formulation of the Thermodynamic Properties of Ordinary Water Substance. Report, IFC Secretariat, Düsseldorf, FRG.Google Scholar
  67. 67.
    Weres, O. and Schroeder, R., 1977. Documentation for Program OGRE. Lawrence Berkeley Lab., Rept LBL-7060.Google Scholar
  68. 68.
    Narasimhan, T. N. and Witherspoon, P. A., 1976. An integrated finite difference method for analyzing fluid flow in porous media. Water Resources Res., 12(1), 57–64.CrossRefGoogle Scholar
  69. 69.
    Pruess, K., Bodvarsson, G. S. and Stefánsson, V., 1984. Analysis of production data from the Krafla geothermal field, Iceland. Proc. Ninth Workshop on Geothermal Resource Engineering, Stanford University, Stanford, CA, USA, 13–15 December 1983.Google Scholar
  70. 70.
    Bodvarsson, G. S., O’Sullivan, M. J. and Tsang, C. F., 1980. The sensitivity of geothermal reservoir behavior to relative permeability parameters. Proc. Sixth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA.Google Scholar
  71. 71.
    Pruess, K., Bodvarsson, G. S., Stefánsson, V. and Eliasson, E. T., 1984. The Krafla geothermal field, Iceland. 4: History match and prediction of individual well performance. Water Resources Res., 20(11), 1561–84.CrossRefGoogle Scholar
  72. 72.
    Waruingi, S., 1982. A Study of the Olkaria Geothermal Reservoir when Generating Thirty Megawatts of Electricity. Rept 82.22, Geotherm. Inst., University of Auckland, Auckland, New Zealand.Google Scholar
  73. 73.
    Grindley, G. W, 1965. The Geology, Structure and Exploitation of the Wairakei Geothermal Field, Taupo, New Zealand. New Zealand Geol. Surv. Bulletin No. 75.Google Scholar
  74. 74.
    Grindley, G. W, Rishworth, D. E. and Watters, W. A., 1966. Geology of the Tauhara Geothermal Field, Lake Taupo. New Zealand Geol. Surv. Geotherm. Rept No. 4.Google Scholar
  75. 75.
    Mercer, J. W., Pinder, G. F. and Donaldson, I. G., 1975. A Galerkin finite- element analysis of the hydrothermal system at Wairakei, New Zealand. J. Geophys. Res., 80, 2608–21.CrossRefGoogle Scholar
  76. 76.
    Fisher, R. G., 1964. Geothermal heat flow at Wairakei during 1958. New Zealand J. Geol. Geophys., 7, 172–84.Google Scholar
  77. 77.
    Pritchett, J. W, Rice, L. F. and Garg, S. K, 1978. Reservoir Engineering Data: Wairakei Geothermal Field, New Zealand. Systems, Science and Software, La Jolla, CA, USA, Report SS-R-78–3597-1Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1989

Authors and Affiliations

  • Robert Bowen
    • 1
  1. 1.Institute of Geology and PalaeontologyWestfälische Wilhelms-UniversityMünsterFederal Republic of Germany

Personalised recommendations