Antifolates

  • M. G. Nair
Part of the Cancer Growth and Progression book series (CAGP, volume 10)

Abstract

By definition, folate antagonists are compounds which are capable of interfering with tetrahydrofolate utilization. The source of folic acid (1) in man is exogenous. All biologically relevant coenzymatic forms of folic acid possess a tetrahydropteridine ring system (11). Folic acid is converted to 5,6,7,8-tetrahydrofolic acid by a stepwise reduction mediated by the key enzyme dihydrofolate reductase (EC 1.5.1.3). The stereochemistry of the enzymatic reduction of folic acid to its tetrahydroderivative was investigated by Charlton and Young (19), and they defined the absolute configuration at C-6 of this derivative as (S). The (S) configuration at C-6 of tetrahydrofolic acid is usually referred to as the ‘natural configuration’. This stereochemical assignment was in agreement with that proposed by Fontecilla-Camps et al. (44) by X-ray crystallography.

Keywords

Dihydrofolate Reductase High Dose Methotrexate Cancer Treat Report Tetrahydrofolic Acid Double Minute Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alt PW, Kellems RE, Schimke RT: Synthesis and degradation of folate reductase in sensitive and methotrexate resistant lines of S-180 cells. J Biol Chem 251: 3063, 1976PubMedGoogle Scholar
  2. 2.
    Baugh CM, Krumdieck CL, Baker HJ, Butterworth CE: Absorption of folic acid poly-y-glutamates in dogs. J Nutrition 105: 80, 1975Google Scholar
  3. 3.
    Baugh CM, Krumdieck CL, Nair MG: Polygammaglutamyl metabolites of methotrexate. Biochem Biophys Res Comm 52: 27, 1973PubMedGoogle Scholar
  4. 4.
    Baugh CM, Krumdieck CL: Naturally occurring folates. Ann NY Acad Sci 186: 7, 1971PubMedGoogle Scholar
  5. 5.
    Bertino JR: In: Antineoplastic and Immunosuppressive Agents, Part II, edited by Sartorelli AC, Johns DG, p. 468. Springer-Verlag, Berlin, 1975Google Scholar
  6. 6.
    Bertino JR, Johns DG: Folate antagonists. Ann Rev Med 28: 27, 1967Google Scholar
  7. 7.
    Bertino JR: Rescue techniques in cancer chemotherapy: use of leucovorin and other rescue agents after methotrexate treatment. Semin Oncol 4: 203, 1977PubMedGoogle Scholar
  8. 8.
    Bertino JR, Booth BA, Cashmore A, Bieber AL, Sartorelli AC: Studies of the inhibition of dihydrofolate reductase by folate antagonists. J Biol Chem 239: 479, 1964PubMedGoogle Scholar
  9. 9.
    Biedler JL, Spengler BA: Metaphase chromosome anomaly: association with drug resistance and cell specific products. Science 191: 185, 1976PubMedGoogle Scholar
  10. 10.
    Bitran JD, Desser RK, DeMeester TR et al.: Cyclophosphamide, adriamycin, methotrexate and procarbazine (CAMP)-effective four drug combination chemotherapy for metastatic non-oat cell bronchogenic carcinoma. Cancer Treatment Reports 60: 1225, 1976PubMedGoogle Scholar
  11. 11.
    Blakley RL: The Biochemistry of Folic Acid and Related Pteridines. North Holland, Amsterdam, 1969Google Scholar
  12. 12.
    Borsa J, Whitmore GF: Cell killing studies on the mode of action of methotrexate on L-cells in vitro. Cancer Res 29: 737, 1969Google Scholar
  13. 13.
    Broquist HP: Evidence for the excretion of formimino glutamic acid following folic acid antagonist therapy in acute leukemia. J Amer Chem Soc 78: 6205, 1956Google Scholar
  14. 14.
    Bruckner HW, Lokich JJ, Stablein DM: Studies of Baker’s antifol, methotrexate, razoxane in advanced gastric cancer: a gastrointestinal tumor study group report. Cancer Treat Reports 66: 1713, 1982Google Scholar
  15. 14a.
    Burchenal JH, Murphy ML: Long-term survivors in acute leukemia. Cancer Res 25: 1491–94, 1965PubMedGoogle Scholar
  16. 15.
    Burkitt D, Hult MSR, Wright DH: The African lymphoma. Preliminary observations on response to therapy. Cancer 18: 399, 1965PubMedGoogle Scholar
  17. 16.
    Butterworth CE, Baugh CM, Krumdieck CL: A study of folate absorption and metabolism in man utilizing 14C labeled polyglutamates synthesized by the solid phase method. J Clin Invest 48: 1131, 1969PubMedGoogle Scholar
  18. 17.
    Calabresi P, Parks RE Jr. In: The Pharmacological Basis of Therapeutics, 5th edn, edited by Goodman LS, Gillman A, pp. 1268. McMillan, New York, 1975Google Scholar
  19. 18.
    Calvert AH, Jones TR, Dady PJ, Sztabert GB, Paine RM, Taylor GA, Harrap KR: Quinazoline antifolates with dual biochemical loci of action. Biochemical and biological studies directed towards overcoming methotrexate resistance. Europ J Cancer 16: 713, 1980Google Scholar
  20. 19.
    Charlton PA, Young DW: Stereochemistry of reduction of folic acid using dihydrofolate reductase. JCS Chem Comm 20: 922, 1979.Google Scholar
  21. 20.
    Chello PL, Sirotnak FM, Dorick DM, Gura J: Folate analog transport by isolated murine intestinal epithelial cells. In: Chemistry and Biology of Pteridines, edited by Kisliuk RL, Brown GM, p. 521. Elsevier North Holland, Inc., New York, 1979Google Scholar
  22. 21.
    Cheng YC, Szeto DW, Dolnick BT: Human thymidylate synthetase. Action of folate and methotrexate analogues. In: Chemistry and Biology of Pteridines, edited by Kisliuk RL, Brown GM, p. 395. Elsevier, North Holland, New York, 1979Google Scholar
  23. 22.
    Cheng YC, Dutschman GE, Starnes MC, Fisher MH, Nanavati NT, Nair MG: Activity of the new antifolate N10propargyl-5,8-dideazafolate and its polyglutamates against dihydrofolate reductase, human thymidylate synthase, and KB cells containing different levels of dihydrofolate reductase. Cancer Res 45: 598, 1985PubMedGoogle Scholar
  24. 23.
    Colman N, Herbert V: Kinetic and chromatographic evidence for heterogeneity of the high affinity folate binding proteins in serum. In: Chemistry and Biology of Pteridines, edited by Kisliuk RL, Brown GM, p. 525. Elsevier, North Holland, New York, 1979Google Scholar
  25. 24.
    Covey JM: Polyglutamate derivatives of folic acid coenzymes and methotrexate. Life Sciences 26: 655, 1980Google Scholar
  26. 25.
    Curt G, Jolivet J, Carney D, Bailey BD, Chabner BA: Methotrexate (MTX) resistance in cultured human small cell lung cancer (SCLC). AACR Proc 23: 9, 1982Google Scholar
  27. 26.
    Curt GA, Carney DN, Cowan KH, Jolivet J, Bailey BD, Drake JC, Kao-shan CS, Minna JD, Chabner BA: Unstable methotrexate resistance in human small cell carcinoma associated with double minute chromosomes. New Engl J Med 308: 199, 1983PubMedGoogle Scholar
  28. 27.
    Das KC, Hoffbrand AV: Studies of folate uptake by phytochaemagglutinin-stimulated lymphocytes. Brit J Haematol 19: 203, 1970Google Scholar
  29. 28.
    DeGraw JI, Goodman L, Weinstein B, Baker BR: Potential anticancer agents. LXIX. Tetrahydroquinazoline analogues of tetrahydrofolic acid. IV. The synthesis of 5,8-dideaza5,6,7,8-tetrahydroaminopterin. J Org Chem 27: 576, 1962Google Scholar
  30. 29.
    DeGraw JI, Marsh JP Jr, Acton EM, Crews OP, Mosher CW, Fujiwara AN, Goodman L: The synthesis of homofolic acid. J Org Chem 30: 3404, 1965Google Scholar
  31. 30.
    DeGraw JI, Kisliuk RL, Baugh CM, Nair MG: Synthesis and antifolate activity of 10-deaza aminopterin. J Med Chem 17: 552, 1974PubMedGoogle Scholar
  32. 31.
    DeGraw JI, Kisliuk RL, Gaumont Y, Baugh CM: Antimicrobial activity of 8-deazafolic acid. J Med Chem 17: 470, 1974PubMedGoogle Scholar
  33. 32.
    DeGraw JI, Brown VH, Kisliuk RL, Sirotnak FM: Synthesis and antifolate activity of 10-deaza-minopterin. In: Chemistry and Biology of Pteridines, edited by Kisliuk RL, Brown GM, p. 225. Elsevier, North Holland, New York, 1979Google Scholar
  34. 33.
    DeGraw JI, Brown VH, Tagawa H, Kisliuk RL, Gaumont Y, Sirotnak FM: Synthesis and antitumor activity of 10alkyl-l0-deazaminopterins. A convenient synthesis of 10deaza-minopterin. J Med Chem 25: 1227, 1982PubMedGoogle Scholar
  35. 34.
    Djerassi I, Kim SJ, Nayak N, Ohanissian H, Alder S, Hseich S: Cancer Treat Reports 61: 749, 1977Google Scholar
  36. 35.
    Djerassi I, Rominger CJ, Kim JS et al.: Phase I study of high dose methotrexate with citrovorum factor in patients with lung cancer. Cancer 30: 22, 1972PubMedGoogle Scholar
  37. 36.
    Djerassi I, Royer AE et al.: Long term remission in childhood acute leukemia. Use of infrequent infusions of methotrexate; supportive role of platelet transfusions and citrovorum factor. Clin Pediatr 5: 502, 1966Google Scholar
  38. 37.
    Djerassi I, Royer G, Treat C et al.: Management of childhood lymphosarcoma and reticulum cell sarcoma with high dose intermittent methotrexate and citrovorum factor. Proc Am Assoc Cancer Res 9: 18, 1968Google Scholar
  39. 38.
    Dolnick BJ, Berenson RJ, Bertino JR, Kaufman RJ, Nun-berg JH, Shimke RT, Correlation of dihydrofolate reductase elevation with gene amplification in a homogeneously staining chromosomal region in L5178 Y cells. J Cell Biol 83: 394, 1979PubMedGoogle Scholar
  40. 39.
    Domin BA, Cheng YC, Nair MG: Effect of 11-oxahomofolate and its reduced derivatives on human dihydrofolate reductase and human cells having different amounts of dihydrofolate reductase. Biochem Pharmacol 31: 255, 1982PubMedGoogle Scholar
  41. 40.
    Domin BA, Cheng YC, Hakala MT: Properties of dihydrofolate reductase from a methotrexate resistant subline of human KB cells, and it’s interaction with polyglutamates. In: Chemistry and Biology of Pteridines, edited by Kisliuk RL, Brown GM, p. 395. Elsevier, North Holland, Inc., New York, 1979Google Scholar
  42. 41.
    Eisenstadt J, Lengyel P: Formylmethionyl-tRNA dependence of amino acid incorporation in extracts of trimethoprim treated E. coli. Science 154: 524, 1966Google Scholar
  43. 42.
    El-Dareer SM, Tillery KF, Hill DL: Disposition of 5-methyl tetrahydrohomofolate in mice, dogs and monkeys. Cancer Treat Reports 63: 201, 1979Google Scholar
  44. 43.
    Ervin TJ, Weichselbaum R, Miller D, Meshad M, Posner M, Fabian R: Treatment of advanced squamous cell carcinoma of the head and neck with cisplatin bleomycin and methotrexate. Cancer Treat Reports 65: 787, 1981Google Scholar
  45. 44.
    Fontecilla-Camps JC, Bugg CE, Tample C, Rose JD, Montgomery JA, Kisliuk RL: In: Chemistry and Biology of Pteridines, edited by Kisliuk RL, Brown GM, p. 235. Elsevier, North Holland, New York, 1979Google Scholar
  46. 45.
    Freeman MV: The fluorometric measurement of the absorption, distribution, and excretion of single doses 4-amino-l0methyl-pteroyl glutamic acid (Amethopterin) in man. J Pharmacol Exp Ther 122: 154, 1958PubMedGoogle Scholar
  47. 46.
    Friedkin M, Crawford EJ, Plante LT: Empirical vs rational approaches to cancer chemotherapy. Annals NY Acad Sci 186: 209, 1971Google Scholar
  48. 47.
    Friedkin M, Crawford EJ, Humphreys SR, Goldin A: The association of increased dihydrofolate reductase with amethopterin resistance in mouse leukemia. Cancer Res 22: 600, 1962PubMedGoogle Scholar
  49. 48.
    Fry DW, Anderson LA, Borst M, Goldman ID: Analysis of the role of membrane transport and polyglutamation of methotrexate in gut and Ehrlich tumor in vivo as factors in drug sensitivity and selectivity. Cancer Res 43: 1087, 1983PubMedGoogle Scholar
  50. 49.
    Galivan J: Evidence for the cytotoxic activity of poly-glutamate derivatives of methotrexate. Mol Pharmacol 17: 105, 1980PubMedGoogle Scholar
  51. 50.
    Gaumont Y, Kisliuk RL: Action of diastereoisomers of tetrahydrohomofolate on the growth of Lactobacillus casei. Annals NY Acad Sci 186: 438, 1971Google Scholar
  52. 51.
    Gewirtz AD, White JC, Randolph JK, Goldman ID: Formation of methotrexate polyglutamates in rat hepatocytes. Cancer Res 39: 2914, 1979PubMedGoogle Scholar
  53. 52.
    Goldin A, Mantel D, Greenhouse S: Effect of delayed administration of citrovorum factor on the antileukemic effectiveness of aminopterin in mice. Cancer Res 14: 43, 1954PubMedGoogle Scholar
  54. 53.
    Goldin A, Venditti J, Kline: Eradication of leukemia cells (L1210) by methotrexate plus citrovorum factor. Nature 212: 1548, 1966PubMedGoogle Scholar
  55. 54.
    Goldman ID: The characteristics of the membrane transport of amethopterin and naturally occurring folates. Annals NY Acad Sci 186: 400, 1971Google Scholar
  56. 55.
    Goldman ID: Analysis of the cytotoxic determinants for methotrexate (NSC 740). A role for intracellular drug. Cancer Chemother Rep 6: 51, 1975Google Scholar
  57. 56.
    Goodman L, DeGraw J, Kisliuk RL, Friedkin M, Pastore EJ, Crawford EJ, Plante LT, Al-Nahas A, Morningstar JF, Kwok G, Wilson L, Donovan EF, Ratzan J: Tetrahydrohomofolate, a specific inhibitor of thymidylate synthetase. J Amer Chem Soc 86: 308, 1964Google Scholar
  58. 57.
    Hakala MT: On the role of drug penetration in amethopterin resistance of sarcoma-180 cells in vitro. Biochim Biophys Acta 102: 198, 1965PubMedGoogle Scholar
  59. 58.
    Harrap KR, Hill BT, Furness ME, Hart LI: Sites of action of amethopterin: Intrinsic and acquired drug resistance. Annals NY Acad Sci 186: 312, 1971Google Scholar
  60. 59.
    Henderson ES, Adamson RH, Denham C, Olivero VT: The metabolic fate of tritiated methotrexate. 1. Absorption, excretion, and distribution in mice, rats, dogs and monkeys. Cancer Res 25: 1008, 1965PubMedGoogle Scholar
  61. 60.
    Hertz R, Lewis J, Lipsett MB: Five years experience with the chemotherapy of metastatic choriocarcinoma and related trophoblastic tumors in women. Am J Obstet Gynec 82: 631, 1961PubMedGoogle Scholar
  62. 61.
    Hertz R, Ross GT, Lipsett MB: Primary chemotherapy of non-metastatic trophoblastic disease in women. Am J Obstet Gynec 86: 808, 1965Google Scholar
  63. 62.
    Hornbeak HR, Nair MG: Antifolate Activity of Isoaminopterin in HeLa Cells. Antimicrobial Agents and Chemotherapy 15: 503, 1979Google Scholar
  64. 63.
    Hornbeak HR, Nair MG: Transport and inhibitory activity of new folate analogues in HeLa Cells. Molecular Pharmacol 14: 299, 1978Google Scholar
  65. 64.
    Howell SB, Ensminger WD, Krishan A, Frie E: Thymidine rescue of high dose methotrexate in humans. Cancer Res 38: 325, 1978PubMedGoogle Scholar
  66. 65.
    Huennekens FM, Henderson GB: Transport of folate compounds into mammalian and bacterial cells. In: Chemistry and Biology of Pteridines, edited by Pfleiderer W, p. 179. Walter de Gruyter, Berlin, New York, 1975Google Scholar
  67. 66.
    Hughes LR, Marsham PR, Oldfield J, Jones TR, O’Connor BM, Bishop JAM, Calvert AH, Jackman AL: Thymidylate synthase (TS) inhibitory and cytotoxic activity of a series of C2 substituted-5,8-dideazafolates. Proc Am Assoc Cancer Res 29: 286, 1988Google Scholar
  68. 67.
    Jackman AL, Taylor GA, Moran R, Bishop JAM, Bisset G, Pawelczak K, Balmanno K, Hughes LR, Calvert AH: Biological properties of 2-desamino-2-substituted-5,8-dideazafolates that inhibit thymidylate synthase. Proc Am Assoc Cancer Res 29: 287, 1988Google Scholar
  69. 68.
    Jacobs SA, Derr CJ, Johns DG: Accumulation of methotrexate diglutamate in human liver during methotrexate therapy. Biochem Pharmacol 26: 2310, 1977PubMedGoogle Scholar
  70. 69.
    Jacobs SA, Stoller RG, Chabner BA, Johns DG: 7-hydroxymethotrexate as a urinary metabolite in human subjects and Rhesus monkeys receiving high dose methotrexate. J Clin Invest 57: 534, 1976PubMedGoogle Scholar
  71. 70.
    Jacobs SA, Adamson RH, Chabner BA, Derr CI, Johns DG: Stoichiometric inhibition of mammalian dihydrofolate reductase by the y-glutamyl metabolite of methotrexate, 4-amino-4-deoxy-N10-methylpteroyl-glutamyl-γ-glutamate. Biochem Biophys Res Commun 63: 692, 1975PubMedGoogle Scholar
  72. 71.
    Jaffe N, Paed D: Recent advances in the chemotherapy of metastatic osteogenic sarcoma. Cancer 30: 1627, 1972PubMedGoogle Scholar
  73. 72.
    Johns DG, Valerino DM: Metabolism of folate antagonists. Annals NY Acad Sci 186: 378, 1971Google Scholar
  74. 73.
    Johnson TB, Nair MG, Galivan J: Role of folylpolyglutamate synthetase in the regulation of methotrexate poly-glutamate formation in H35 hepatoma cells. Cancer Res 48: 2426, 1988PubMedGoogle Scholar
  75. 74.
    Jolivet J, Schilsky RL, Bailey BD, Drake JC, Chabner BC: Synthesis, retention, and biological activity of methotrexate polyglutamates in cultured human breast cancer cells. Clin Invest 70: 351, 1982Google Scholar
  76. 75.
    Jones TR, Calvert AH, Jackman AL, Brown SJ, Jones M, Harrap KR: A potent antitumor quinazoline inhibitor of thymidylate synthase: synthesis, biological properties and therapeutic results in mice. Europ J Cancer 17:11, 1981Google Scholar
  77. 76.
    Kim YH, Gaumont Y, Kisliuk RL, Mautner HG: Synthesis and biological activity of 10-Thia-l0-deaza analogues of folic acid, pteroic acid and related compounds. J Med Chem 18: 776, 1975PubMedGoogle Scholar
  78. 77.
    Kisliuk RL: Homofolates and other 2-amino-4-oxy antifolates. In: New Approaches to the Design of Antineoplastic Agents, edited by Bardos, Kalman, p. 201. Elsevier Science Publishing Company, Inc., 1982Google Scholar
  79. 78.
    Kisliuk RL, Gaumont Y, Baugh CM, Galivan JH, Maley GF, Maley F: Inhibition of thymidylate synthase by poly-yglutamyl derivatives of folate and methotrexate. In: Chemistry and Biology of Pteridines, edited by Kisliuk RL, Brown GM, p. 431. Elsevier North Holland, Inc., New York, 1979Google Scholar
  80. 79.
    Kisliuk RL, Gaumont Y: Action of diastereomers of tetrahydrohomofolate on the growth of L. casei. Annals NY Acad Sci 186: 438, 1971Google Scholar
  81. 80.
    Kisliuk RL, Gaumont Y: Tetrahydrohomofolate: an inhibitor of folate transport in S. faecium. In: Chemistry and Biology of Pteridines, edited by Iwai K, Akino M, Goto M, Iwanami Y, p. 357. International Academic Printing Co., Tokyo, 1970Google Scholar
  82. 81.
    Kisliuk RL, Tattersall MHN, Gaumont Y, Pastore EJ, Brown B: Aspects of reversal of methotrexate toxicity in rodents. Cancer Treat Reports 61: 647, 1977Google Scholar
  83. 82.
    Lin RL, Narasimhachari N: Tetrahydrofolic acid: An inhibitor of the methyl tetrahydrofolic acid-mediated methylation of indol ethyl amines. Biochemica et Biophysica Acta 385: 268, 1975Google Scholar
  84. 83.
    Livingston D, Crawford EJ, Friedkin M: Studies with tetrahydrohomofolate and thymidylate synthase from amethopterin-resistant mouse leukemia cells. Biochemistry 7: 2814, 1968PubMedGoogle Scholar
  85. 84.
    Loo TL, Adamson RH: The metabolite of 3’,5’-dichloro-4amino-4-deoxy-N10-methylptroyl glutamic acid (dichloromethotrexate). J Med Chem 8: 513, 1965PubMedGoogle Scholar
  86. 85.
    McCuen RW, Sirotnak FM: Thymidylate synthetase from D. pneumoniae. Properties and inhibition by folate analogues. Biochim Biophys Acta 384: 369, 1975PubMedGoogle Scholar
  87. 86.
    Mastropaolo D, Camerman A: Folic acid: crystal structure and implications for enzyme binding. Science 210: 334, 1980PubMedGoogle Scholar
  88. 87.
    Mead JAR, Goldin A, Kisliuk RL, Friedkin M, Plante L, Crawford EJ, Kwok G: Pharmacologic aspects of homofolate derivatives in relation to amethopterin-resistant murine leukemia. Cancer Res 26: 2374, 1966PubMedGoogle Scholar
  89. 88.
    Mead JAR: Biochemical pharmacology and drug design. Coll Pap Ann Symp Fundam Cancer Res 27: 197, 1975Google Scholar
  90. 89.
    Mead JAR: Rational design of folic acid antagonists. In: Handbuch fuer Experimentelle Pharmakologie: Antineoplastic and Immuno Suppressive Agents, p. 52. Springer-Verlag, New York, 1974Google Scholar
  91. 90.
    Mishra LC, Parmer AS, Mead JAR: The antileukemic activity of dihydrohomofolate (H2HF) and its reduction to tetrahydrohomofolate (H4-HF) in mice. Proc Am Assoc Cancer Res 11: 57, 1970Google Scholar
  92. 91.
    Montgomery JA, Rose JD, Temple C Jr, Piper JR: A convenient synthesis of methotrexate and related compounds. In: Chemistry and Biology of Pteridines, edited by Pfleiderer W, p. 485. Walter De Gruyter, Berlin, 1975Google Scholar
  93. 92.
    Nahas A, Nixon PF, Bertino JR: Uptake and metabolism of N5-formyl tetrahydrofolate by L1210 leukemia cells. Cancer Res 32: 1416, 1972PubMedGoogle Scholar
  94. 93.
    Nair MG, Salter DC, Kisliuk RL, Gaumont Y, Sirotnak FM: Unpublished work, 1983Google Scholar
  95. 94.
    Nair MG, Salter DC, Kisliuk RL, Gaumont Y, North G, Sirotnak FM: Folate analogues, 21: synthesis and antifolate and antitumor activities of N10-(cyanomethyl)-5,8-dideaza folic acid. J Med Chem 26: 605, 1983PubMedGoogle Scholar
  96. 95.
    Nair MG, Baugh CM: Synthesis and biological evaluation of poly-y-glutamyl derivatives of methotrexate. Biochem 12: 3923, 1973Google Scholar
  97. 96.
    Nair MG, Chen SY, Kisliuk RL, Gaumont Y, Strumpf D: Folate analogues altered in the C9,N10-bridge region 11thiohomofolic acid. J Med Chem 22: 850, 1979PubMedGoogle Scholar
  98. 97.
    Nair MG, Bridges TW, Henkel TJ, Kisliuk RL, Gaumont Y, Sirotnak FM: Folate analogues altered in the C9,N10-bridge region. 18. Synthesis and antitumor evaluation of 11-oxahomo aminopterin. J Med Chem 24: 1058, 1981Google Scholar
  99. 98.
    Nair MG, Sanders C, Chen SY, Kisliuk RL, Gaumont Y: Folate analogues altered in the C9,N10-bridge region. 14. 11-oxahomofolic acid, a potential antitumor agent. J Med Chem 23: 59, 1980PubMedGoogle Scholar
  100. 99.
    Nair MG, Campbell PT: Folate analogues altered in the C9,N10-bridge region: 10-oxafolic acid and 10-oxa aminopterin. J Med Chem 19: 825, 1976PubMedGoogle Scholar
  101. 100.
    Nair MG, Campbell PT, Baugh CM: The synthesis of 10thiofolic acid, a potential antitumor agent. J Org Chem 40: 1745, 1975PubMedGoogle Scholar
  102. 101.
    Nair MG, Baugh CM: The synthesis and biological evaluation of isofolic acid. J Med Chem 17: 223, 1974PubMedGoogle Scholar
  103. 102.
    Nair MG, Mehtha AP, Dair IG: The metabolism of 10Propargyl-5,8-dideazafolate in mice. Fed Proc 45: 821, 1986Google Scholar
  104. 103.
    Nair AG, Nanavati NT, Nair IG, Kisliuk RL, Gaumont Y, Hsiao MC, Kalman TI: Folate Analogues. 26. Synthesis and antifolate activity of 10-substituted derivatives of 5,8-dideazafolic acid and the polyglutamyl metabolites of N10propargyl-5,8-dideazafolic acid (PDDF). J Med Chem 29: 1754, 1986PubMedGoogle Scholar
  105. 104.
    Nair MG, Murthy BR, Patil SD, Kisliuk RL, Thorndike J, Gaumont Y, Ferone R, Duch DS, Edelstein MP: Folate Analogs. 31. Synthesis of the reduced derivatives of 11deazahomofolic acid, 10-methyl-11-deazahomofolic acid and their evaluation as inhibitors of glycinamide ribonucleotide formyltransferase. J Med Chem 32: 1277, 1989PubMedGoogle Scholar
  106. 105.
    Niethammer D, Jackson RC: Transport of folate compounds through the membrane of human lymphoblastoid cells. In: Chemistry and Biology of Pteridines, edited by Pfleiderer W, p. 197. Walter de Gruyter, Berlin, 1975Google Scholar
  107. 106.
    Nunberg JH, Kaufman RJ, Schimke RT, Uerlab G, Chasin LA: Amplified dihydrofolate reductase genes are localized to a homogeneously staining region of a single chromosome in a methotrexate-resistant Chinese hamster ovary cell line. Proc Natl Acad Sci USA 75: 5553, 1978PubMedGoogle Scholar
  108. 107.
    Oliverio VT, Zaharko DS: Tissue distribution of folate antagonists. Annals NY Acad Sci 186: 387, 1971Google Scholar
  109. 108.
    Oliverio VT, Loo TL: Separation and isolation of metabolites of folic acid antagonists. Proc Amer Assoc Cancer Res 3: 140, 1960Google Scholar
  110. 109.
    Patil SD, Jones C, Nair MG, Galivan J, Maley F, Kisliuk RL, Gaumont Y, Thorndike J, Duch D, Ferone R: Folate Analogues 32: Synthesis and biological evaluation of 2-desamino-2-methyl-N10-propargyl-5,8-dideazafolic acid (DMPD DF) and related compounds. J Med Chem 32: 1284, 1989PubMedGoogle Scholar
  111. 110.
    Peters TJ: Intestinal peptidases. Gut 11: 720, 1970PubMedGoogle Scholar
  112. 111.
    Piper JR, McCaleb GS, Montgomery JA, Kisliuk RL, Gaumont Y, Sirotnak FM: 10-Propargylaminopterin and alkyl homologues of methotrexate as inhibitors of folate metabolism. J Med Chem 25: 877, 1982PubMedGoogle Scholar
  113. 112.
    Piper WN, van Lier RBL, Hardwicke DM: Pteridine regulation of uroporphyrinogen I synthetase activity. In: Chemistry and Biology of Pteridines, edited by Kisliuk RL, Brown GM, p. 329. Elsevier, North Holland, New York, 1979Google Scholar
  114. 113.
    Poser RG, Sirotnak FM, Chello PL: Extracellular recovery of methotrexate polyglutamates following efflux from L1210 leukemia cells. Biochem Pharmacol 29: 2701, 1980PubMedGoogle Scholar
  115. 114.
    Poser RG, Sirotnak FM, Chello PL: Differential synthesis of MTX polyglutamates in normal proliferative and neoplastic mouse tissues in vivo. Cancer Res 41: 4441, 1981PubMedGoogle Scholar
  116. 115.
    Rosen G, Nirenberg: Chemotherapy of osteogenic sarcoma: An investigative method, not a recipe. Cancer Treat Rep 66: 1687, 1982PubMedGoogle Scholar
  117. 116.
    Rosenblatt DS, Whitehead VM, Vera N, Pottier A, Dupont M, Vuchich MJ: Prolonged inhibition of DNA synthesis associated with the accumulation of methotrexate poly-glutamates by cultured human cells. Mol Pharmacol 14: 1143, 1978PubMedGoogle Scholar
  118. 117.
    Rueckert RR, Mueller GC: Studies on unbalanced growth in tissue culture. I. Induction and consequences of thymidine deficiency. Cancer Res 20: 1584, 1960PubMedGoogle Scholar
  119. 118.
    Ryser HJP, Shen WC: Conjugation of methotrexate to poly (L-lysine) increases drug transport and overcomes drug resistance in cultured cells. Proc Natl Acad Sci USA 75: 3867, 1978PubMedGoogle Scholar
  120. 119.
    Sartorelli AC, LePage GA: Effects of amethopterin on the purine biosynthesis of susceptible and resistant TA3 ascites cells. Cancer Res 18: 1336, 1958PubMedGoogle Scholar
  121. 120.
    Sartorelli AC, Upchurch HF, Bolte BA: Effects of folinic acid on amethopterin induced inhibition of Ehrlich ascites carcinoma. Cancer Res 22: 102, 1962PubMedGoogle Scholar
  122. 121.
    Scanlon KJ, Moroson BA, Bertino JR, Hynes JB: Quinazoline analogues of folic acid as inhibitors of thymidylate synthetase from bacterial and mammalian sources. Molec Pharmacol 16: 261, 1979Google Scholar
  123. 122.
    Schimke RT: Gene amplification and drug resistance. Sci Amer 243: 60, 1980PubMedGoogle Scholar
  124. 123.
    Seeger DR, Smith JM, Hultquist ME: Antagonist for pteroylglutamic acid. J Amer Chem Soc 69: 2567, 1947Google Scholar
  125. 124.
    Seeger DR, Cosulich DB, Smith JM, Hultquist ME: Analogs of pteroyl glutamic acid. III. 4-amino derivatives. J Amer Chem Soc 71: 1753, 1949Google Scholar
  126. 125.
    Shapiro WR: High-dose methotrexate in malignant gliomas. Cancer Treat Reports 61: 753, 1977Google Scholar
  127. 126.
    Sirotnak FM, Donsbach RC, Dorick DM, Moccio DM: High dose methotrexate therapy with citrovorum factor: A pharmacologic perspective in murine tumor models. Cancer Treat Reports 61: 565, 1977Google Scholar
  128. 127.
    Sirotnak FM, Kurita S, Hutchison DJ: On the nature of a transport alteration determining resistance to amethopterin in L1210 leukemia. Cancer Res 28: 75, 1968PubMedGoogle Scholar
  129. 128.
    Sirotnak FM, Chello PL, Piper JR, Montgomery JA, DeGraw JI: Structural specificity of folate analog transport and binding to dihydrofolate reductase in murine tumor and normal cells: Relevance to therapeutic efficacy. Chemistry and Biology of Pteridines, edited by Kisliuk RL, Brown GM, p. 597. Elsevier North Holland, New York, 1979Google Scholar
  130. 129.
    Sirotnak FM: Correlates of folate analog transport, pharmacokinetics, and selective antitumor action. Pharmacol Ther 8: 71, 1980Google Scholar
  131. 130.
    Sirotnak FM, DeGraw JI, Moccio DM, Dorick DM: Antitumor properties of a new folate analog, 10-deaza aminopterin in mice. Cancer Treat Rep 62: 1047, 1978PubMedGoogle Scholar
  132. 131.
    Sirotnak FM: Private communication, 1983Google Scholar
  133. 132.
    Skipper HE, Mitchell JH, Bennett LL: Inhibition of nucleic acid synthesis by folic acid antagonists. Cancer Res 10: 510, 1950PubMedGoogle Scholar
  134. 133.
    Skipper HE, Bennett LL, Law LW: Effects of amethopterin on formate incorporation into the nucleic acids of susceptible and resistant leukemic cells. Cancer Res 12: 677, 1952PubMedGoogle Scholar
  135. 134.
    Smith GK, Benkovic PA, Benkovic SJ: L(—)-10-formyl tetrahydrofolate is the cofactor for glycinamide ribonucleotide transformylase from chicken liver. Biochem 20: 4034, 1981Google Scholar
  136. 135.
    Steel GG: Cytokinetics in neoplasia. In: Cancer Medicine, edited by Holland JF, Frei III E, p. 125. Philadelphia: Lea and Febiger, 1973Google Scholar
  137. 136.
    Struck RF, Shealy YF, Montgomery JA: Potential folic acid antagonists. 5. Synthesis and biologic evaluation of N10deazapteroic acid and N10-deazafolic acid and their 9,10dihydro derivatives. J Med Chem 14: 693, 1971PubMedGoogle Scholar
  138. 137.
    Taylor EC, Wong GSK, Fletcher SR, Harrington PJ, Beardsley PG, Shih CJ: Synthesis of 5,10-dideaza-5,6,7,8tetrahydrofolic acid (DDATHF) and analogs. In: Chemistry and Biology of Pteridines, edited by Cooper BA and Whitehead VM, p 61, Walter de Gruyter, Berlin 1986Google Scholar
  139. 138.
    Totter JR, Best AN: The metabolism of formate 14C by rabbit bone marrow in vitro. Arch Biochem Biophys 54: 318, 1955PubMedGoogle Scholar
  140. 139.
    Thorndike J, Gaumont Y, Kisliuk RL et al.: Infiltration of glycinamide ribonucleotide formal transferase a.o. folic enzymes by homofolate folice glutamate in human lymphoma and murine leukemia cell extracts. Cancer Res 29, 1988 (in press)Google Scholar
  141. 140.
    Von Hoff DD, Penta JS, Helman LJ, Slavik M: Incidence of drug related deaths secondary to high dose methotrexate and citrovorum factor administration. Cancer Treat Reports 61: 745, 1977Google Scholar
  142. 141.
    Waxman S: Studies on the origin of serum folate binding protein. In: Chemistry and Biology of Pteridines, edited by Kisliuk RL, Brown GM, p. 619. Elsevier North Holland, New York, 1979Google Scholar
  143. 142.
    Weiss HD, Walker MD, Niernik PH: Neurotoxicity of commonly used antineoplastic agents. New Engl J Med 291: 75, 1974PubMedGoogle Scholar
  144. 143.
    Whitehead MV: Synthesis of methotrexate polyglutamates in L1210 murine leukemia cells. Cancer Res 37: 408, 1977PubMedGoogle Scholar
  145. 144.
    Whitehead MV, Rosenblatt DS: Decreased synthesis of methotrexate polyglutamates in mutant hamster cells and in folinic acid-treated human fibroblasts. In: Chemistry and Biology of Pteridines, edited by Kisliuk RL, Brown GM, p. 689. Elsevier, North Holland, Inc., N.Y., 1979Google Scholar
  146. 145.
    Williams AD, Staler GG, Winzler RI: The effect of amethopterin on formate-C14 incorporation of mouse leukemias in vitro. Cancer Res 15: 532, 1955PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • M. G. Nair

There are no affiliations available

Personalised recommendations