Ultrafiltration with Peritoneal Dialysis

  • Lee W. Henderson
  • John K. Leypoldt

Abstract

There is a clinical requirement to remove excess body water and electrolytes on a regular basis from patients with end-stage renal failure. The removal of fluid during peritoneal dialysis requires a different approach from that employed during extracorporeal artificial kidney treatment such as hemodialysis or hemofiltration. Whereas fluid can be easily ultrafiltered across a hemodialysis or hemofiltration membrane by applying a difference in hydrostatic or hydraulic pressure, fluid is removed from the patient during peritoneal dialysis by creating a difference in osmotic pressure between dialysis solution and blood. Fluid removal during peritoneal dialysis is therefore more similar to the classical membrane process of osmosis rather than ultrafiltration [1, 2]. The term ultrafiltration, however, has come to be more broadly understood to mean fluid movement induced by either hydrostatic or osmotic pressure driving forces, and we will use the term ultrafiltration to mean fluid movement in this broader sense.

Keywords

Peritoneal Dialysis Solute Transport Solute Diffusion Dialysis Solution Dialysis Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Katchalsky A, Curran PF: Nonequilibrium Thermodynamics in Biophyscs, Harvard University Press, Cambridge, MA, 1965.Google Scholar
  2. 2.
    Schultz SG: Basic Principles of Membrane Transport, Cambridge University Press, Cambridge, England, 1980.Google Scholar
  3. 3.
    Cunningham RS: The physiology of the serous membranes. PhysiolRev 6: 242–280, 1926.Google Scholar
  4. 4.
    Clark AJ: Absorption from the peritoneal cavity. J Pharmacol & Exp Ther 16:415–433, 1921.Google Scholar
  5. 5.
    Putnam TJ: The living peritoneum as a dialyzing membrane. Am J Physiol 63: 548–565, 1922–23.Google Scholar
  6. 6.
    Henderson LW: Peritoneal ultrafiltration dialysis: enhanced urea transfer using hypertonic peritoneal dialysis fluid. J Clin Invest 45: 950–955, 1966.PubMedCrossRefGoogle Scholar
  7. 7.
    Knochel JP: Formation of peritoneal fluid hypertonicity during dialysis with isotonic glucose solutions. J Appl Physiol 27: 233–236, 1969.PubMedGoogle Scholar
  8. 8.
    Dedrick RL, Flessner MF, Collins JM, Schultz JS. Is the peritoneum a membrane? asaio J 5: 1–8, 1982.Google Scholar
  9. 9.
    Flessner MF, Dedrick RL, Schultz JS: A distributed model of peritoneal-plasma transport: theoretical considerations. Am J Physiol 2487: H15-H25., 1984.Google Scholar
  10. 10.
    Staverman AJ: The theory of measurement of osmotic pressure. Rec trav chim 70: 344–352, 1951.CrossRefGoogle Scholar
  11. 11.
    Rippe B, Perry MA, Granger DN: Permselectivity of the peritoneal membrane. Microvasc Res 29: 89–102, 1985.PubMedCrossRefGoogle Scholar
  12. 12.
    Rubin J, Nolph KD, Popovich RP, Moncrief JW: Drainage volumes during continuous ambulatory peritoneal dialysis, asaio J 2: 54–60, 1979.Google Scholar
  13. 13.
    Nolph KD, Twardowski ZJ, Popovich RP, Rubin J: Equilibration of peritoneal dialysis solutions during long-dwell exchanges. J Lab Clin Med 93: 246–256, 1979.PubMedGoogle Scholar
  14. 14.
    Ronco C, Borin D, Brendalon A, Bragantini L, Chiaramonte S, Feriani M, Fabris A, La Greca G: Influence of blood flow and plasma protein on UF rate in peritoneal dialysis. In: Frontiers in Pertitoneal Dialysis, Maher JF, Winchester JF (eds), Field, Rich and Associates, Inc., New York, NY, pp 82–87, 1986.Google Scholar
  15. 15.
    Levin TN, Rigden LB, Nielsen LH, Morre HL, Twardowski ZJ, Khanna R, Nolph KD: Maximum ultrafiltration rates during peritoneal dialysis in rats. Kidney Int 31: 731–735, 1987.PubMedCrossRefGoogle Scholar
  16. 16.
    Jaffrin MY, Odell RA, Farrell PC: A model of ultrafiltration and glucose mass transfer kinetics in peritoneal dialysis. Artif Organs 11: 198–207, 1987.PubMedCrossRefGoogle Scholar
  17. 17.
    Nakanishi TY, Tanaka Y, Fuyjii M, Fukuhara Y, Orita Y: Nonequilibrium thermoidynamics of glucose transport in continuous ambulatory peritoneal dialysis. In: Maekawa M, Nolph KD, Kishimoto T, Moncrief JW (eds), Machine Free Dialysis for Patient Convenience, ISAO Press, Cleveland, OH, pp 39–44.Google Scholar
  18. 18.
    Flessner MF, Fenstermacher JD, Dedrick RL, Blasberg RG: A distributed model of peritoneal-plasma transport: tissue concentration gradients. Am J Physiol 248: F425–F435, 1985.PubMedGoogle Scholar
  19. 19.
    Flessner MF, Dedrick RL, Schultz JS: A distributed model of peritoneal-plasma transport: analysis of experimental data in the rat. Am J Physiol 248: F413–F424, 1985.PubMedGoogle Scholar
  20. 20.
    Shear L, Swartz C, Shinaberger JA, Berry KG: Kinetics of peritoneal abosorption in adult man. NM Engl J Med 272: 123–127, 1965.CrossRefGoogle Scholar
  21. 21.
    Pyle WK, Popovich RP, Moncrief JW: Peritoneal transport evaluation in CAPD. In: Moncrief JW, Popovich RP (eds), CAPD Update, Masson, New York, NY, pp 35–52, 1981.Google Scholar
  22. 22.
    Pyle WK: Mass Transfer in Peritoneal Dialysis, Ph.D. Dissertation Univ of Texas, Austin, 1981.Google Scholar
  23. 23.
    Smeby LC, Wideroe T-E, Jorstad S: Individual differences in water transport during continuous peritoneal dialysis, asaio J 4: 17–27, 1981.Google Scholar
  24. 24.
    Daugirdas JT, Ing TS, Gandhi VC, Hano JE, Chen W-T, Yuan L: Kinetics of peritoneal fluid absorption in patients with chronic renal failure. J Lab Clin Med 95: 351–361, 1980.PubMedGoogle Scholar
  25. 25.
    Flessner MF, Parker RJ, Sieber SM: Peritoneal lymphatic uptake of fibrinogen and erythrocytes in the rat. Am J Physiol 244: H89–H96, 1983.PubMedGoogle Scholar
  26. 26.
    Rippe B, Stelin G, Ahlem J: Lymph flow from the peritoneal cavity in CAPD patients. In: Maher JF, Winchester JF (eds), Frontiers in Pertitoneal Dialysis, Field, Rich and Associates, Inc., New York, NY, pp 24–30, 1986.Google Scholar
  27. 27.
    Spencer PC, Farrell PC: Solute and water transfer kinetics in CAPD. In: Gokel R (ed), Continuous Ambulatory Peritoneal Dialysis, Churchill Livingstone, Edinburgh, UK, pp 38–55, 1986.Google Scholar
  28. 28.
    Pust AH, Leypoldt JK, Frigon RP, Henderson LW: Peritoneal dialysate volume determined by indicator dilution measurements. Kidney Int 33: 64–70, 1988.PubMedCrossRefGoogle Scholar
  29. 29.
    Lindholm B, Werynski A, Tranaeus A, Österberg T, Bergström J: Kinetics of peritoneal dialysis with animo acids as osmotic agents. In: Nosé Y, Kjellstrand C, Ivanovich P, (eds), Progress in Artifical Organs — 1985, ISAO Press, Cleveland, OH, pp 284–288, 1986.Google Scholar
  30. 30.
    DePaepe M, Kips J, Belpaire F, Lamaire N: Comparison of different volume markers in peritoneal dialysis. In: Maher JF, Winchester JF (eds), Frontiers in Peritoneal Dialysis, Field, Rich and Associates, Inc., New York, NY, pp 279–282, 1986.Google Scholar
  31. 31.
    Krediet RT, Zuyderhoudt FMJ, Boeschoten EW, Arisz L: Alterations in the peritoneal transport of water and solutes during peritonitis in continuous ambulatory peritoneal dialysis patients. Eur J Clin Invest 17: 43–52, 1987.PubMedCrossRefGoogle Scholar
  32. 32.
    Twardowski ZJ, Khanna R, Nolph KD: Osmotic agents and ultrafiltration in peritoneal dialysis. Nephron 42: 93–101, 1986.PubMedCrossRefGoogle Scholar
  33. 33.
    Daniels FH, Leonard EF, Cortell S: Glucose and glycerol compared as osmotic agents for peritoneal dialysis. Kidney Int 25: 20–125, 1984.PubMedCrossRefGoogle Scholar
  34. 34.
    Lindholm B, Werynski A, Bergström J: Kinetics of peritoneal dialysis with glycerol and glucose as osmotic agents. Trans Am Soc Artif Intern Organs 33: 19–27, 1987.Google Scholar
  35. 35.
    Mistry CD, Mallick NP, Gokal R: Ultrafiltration with an isosmotic solution during long peritoneal dialysis exchanges. Lancet ii: 178–182, 1987.CrossRefGoogle Scholar
  36. 36.
    Maher JF, Bennett RR, Hirszel P, Chakrabarti E: The mechanism of dextrose-enhanced peritoneal mass transport rates. Kidney Int 28: 16–20, 1985.PubMedCrossRefGoogle Scholar
  37. 37.
    Colton CK, Smith KA, Merrill EW, Friedman S: Diffusion of urea in flowing blood. AIChE J 17: 800–808, 1971.CrossRefGoogle Scholar
  38. 38.
    Henderson KW, Nolph KD: Altered permeability of the peritoneal membrane after using hypertonic peritoneal dialysis fluid. J Clin Invest 48: 992–1001, 1969.PubMedCrossRefGoogle Scholar
  39. 39.
    Nolph KD, Hano JE, Teschan PE: Peritoneal sodium transport during hypertonic peritoneal dialysis. Ann Intern Med 70: 931–941, 1969.PubMedGoogle Scholar
  40. 40.
    Brown ST, Ahearn DJ, Nolph KD: Potassium removal with peritoneal dialysis. Kidney Int 4: 67–69, 1973.PubMedCrossRefGoogle Scholar
  41. 41.
    Rubin J, Klein E, Bower JD: Investigation of the net sieving coefficient of the peritoneal membrane during peritoneal dialysis, asaio J 5: 9–15, 1982.Google Scholar
  42. 42.
    Morgenstern B, Pyle WK, Gruskin A, Baluarte HJ, Perlman S, Polinsky M, Kaiser B: Transport characteristics of the pediatric peritoneum. Kidney Int 25: 259 (Abstract), 1984.Google Scholar
  43. 43.
    Leypoldt JK, Parker HR, Frigon RP, Henderson LW: Molecular size dependence of peritoneal transport. J Lab Clin Med 110: 207–216, 1987.PubMedGoogle Scholar
  44. 44.
    Spiegler KS, Kedem O: Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes, deaslination 1:311–326, 1966.Google Scholar
  45. 45.
    Babb Al, Johansen PJ, Stand MJ, Tenckhoff H, Scribner BH: Bidirectional permeability of the human peritoneum to middle molecules. Proc Eur Dial Transpl Assoc 10: 247–261, 1973.Google Scholar
  46. 46.
    Villarroel F, Klein E, Holland F: Solute flux in hemodialysis and hemofiltration membranes. Trans Am Soc Artif Intern Organs 23: 225–233, 1977.PubMedGoogle Scholar
  47. 47.
    Green DM, Antwiller GD, Moncrief JW, Decherd JF, Popovich R: Measurements of the transmittance coefficient spectrum of Cuprophan and RP69 membranes: applications to middle molecule removal via ultrafiltration. Trans Am Soc Artif Intern Organs 22: 627–636, 1976.PubMedGoogle Scholar
  48. 48.
    Blatt WF, Dravid A, Michael AS, Nelson L: Solute polarization and cake formation in membrane ultrafiltration: causes, consequences and control techniques. In: Flinn JE (eds), Plenum, New York, NY, pp 47–97, 1970.Google Scholar
  49. 49.
    Henderson LW: The problem of peritoneal membrane area and permeability. Kidney Int 3: 409–410, 1973.PubMedCrossRefGoogle Scholar
  50. 50.
    Aune S: Transperitoneal Exchange. I. Peritoneal permeability studies by transperitoneal plasma clearance of urea, PAH, inulin, and serum albumin in rabbits. Scand J Gastroent 5: 85–97, 1970.PubMedGoogle Scholar
  51. 51.
    Randerson DH, Farrell PC: Mass transfer properties of the human peritoneum, asaio J 3: 140–146, 1980.Google Scholar
  52. 52.
    Nolph KD, Miller FN, Pyle WK, Sorkin MI: An hypothesis to explain the ultrafiltration characteristics of peritoneal dialysis. Kidney Int 20: 543–548, 1981.PubMedCrossRefGoogle Scholar
  53. 53.
    Taylor AE, Granger DN: Exchange of macromolecules across the microcirculation. In: Renkin EM, Michel CC, (eds), Handbook of Physiology. Section 2: The Cardiovacular System. Volume IV. Microcirculation, American Physiological Society, bethesda, MD, pp. 467–520, 1984.Google Scholar
  54. 54.
    Patlak CS, Goldstein DA, Hoffman JF: The flow of solute and solvent across a two-membrane system. J theor Biol 5: 426–442.Google Scholar
  55. 55.
    Wendt RP, Mason EA, Bresler EH: Effect of heteroporosity on flux equations for membranes. Biophys Chem 4: 237–247, 1976.PubMedCrossRefGoogle Scholar
  56. 56.
    Leypoldt JK, Henderson LW: The effect of convection on bidirectional peritoneal solute transport: predictions from a distributed model. J theor Biol (in review), 1988.Google Scholar
  57. 57.
    Bell JL, Leypoldt JK, Frigon RP, Henderson LW: Heteroporosity model of peritoneal transport is not supported by hydraulically-driven convective transport. Kidney Int 33: 243 (Abstract), 1988.Google Scholar
  58. 58.
    Chiu AS, Leopoldt JK, Frigon RP, Henderson LW: Peritoneal dialysis to blood transport. Kidney Int 31: 249 (Abstract), 1987.Google Scholar
  59. 59.
    McKay T, Zink J, Greenway CV: 1978, Relative rates of absorption of fluid and protein from the peritoneal cavity in cats. Lymphology 11: 106–110, 1978.Google Scholar
  60. 60.
    Lill SR, Parsons RH, Buhac I: Permeability of the diaphragm and fluid resorption from the peritoneal cavity in the rat. Gastroent 76: 997–1001, 1979.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Lee W. Henderson
  • John K. Leypoldt

There are no affiliations available

Personalised recommendations