Transport Kinetics

  • Robert P. Popovich
  • Jack W. Moncrief
  • W. Keith Pyle

Abstract

Comprehensive mathematical models of the patient-peritoneal dialysis system are fundamental to the analysis and understanding of metabolite and fluid transport in peritoneal dialysis. Theoretical models serve to: (1) illustrate the system parameters which are most significant, (2) define how these parameters relate to each other, (3) predict the behavior of the system, allowing manipulation of the variables to produce optimized clinical results, (4) aid in the design of clinical protocols to measure the parameters, and (5) suggest areas requiring additional investigation. In short, a great deal of information can be acquired from modeling of the peritoneal dialysis system in general with multiple applications to the diagnosis and treatment of individual patients.

Keywords

Peritoneal Dialysis Continuous Ambulatory Peritoneal Dialysis Transport Kinetic Peritoneal Membrane Chronic Peritoneal Dialysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1a.
    Ganter G: Uber die Beseitigung giftiger Stoffe aus dem Blut durch Dialyse. Munch Med Wochschr 70: 1478–1480, 1923. (from Boen ST)Google Scholar
  2. 1b.
    Ganter G: Kinetics of Peritoneal Dialysis. Medicine 40: 243–287, 1961.Google Scholar
  3. 2.
    Cunningham RS: The physiology of the serous membranes. Physiol Rev 6: 242–280, 1926.Google Scholar
  4. 3.
    Clark AJ: Absorption from the peritoneal cavity. J Pharm Exp Ther 16:415–433, 1921.Google Scholar
  5. 4.
    Schlechter AJ, Cary MK, Carpentier AL, Darrow DC: Changes in composition of fluids injected into the peritoneal cavity. Am J Dis Child, 46: 1015–1026, 1933.Google Scholar
  6. 5.
    Bliss S, Kastler AO, Nadler SB: Peritoneal lavage. Effective elimination of nitrogenous wastes in the absence of kidney function. Proc Soc Exp Biol Med 29: 1078–1079, 1932.Google Scholar
  7. 6.
    Odel HM, Ferris DO, Power MH: Peritoneal lavage as an effective means of extrarenal excretion. Am J Med 9: 63–77, 1950.PubMedGoogle Scholar
  8. 7.
    Grollman A, Turner LB, McLean JA: Intermittent peritoneal lavage in nephrectomized dogs and its application to the human being. Arch Intern Med 87: 379–389, 1951.Google Scholar
  9. 8.
    Tenckhoff HA, Schechter H: A bacteriologically safe peritoneal access device. Trans Am Soc Artif Intern Organs 14: 181–187, 1968.PubMedGoogle Scholar
  10. 9.
    Feldman W, Beliah T, Drummond KN: Intermittent peritoneal dialysis in the management of chronic renal failure in children. Am J Dis Child 116: 30–36, 1968.PubMedGoogle Scholar
  11. 10.
    Tenckhoff HA, Blagg CR, Curtis KF, Hickman RO: Chronic peritoneal dialysis. Eur Dial Transpl Assoc 10: 363–370, 1973.Google Scholar
  12. 11.
    Flanigan WJ, Henderson LW, Merrill JP: The clinical application and tecvhnique of peritoneal dialysis. Gen Pract 28: 98–109.Google Scholar
  13. 12.
    Mattocks AM, El-Bassiouni EA: Peritoneal dialysis. A review. J Pharm Sci 60: 1767–1782, 1971.PubMedGoogle Scholar
  14. 13.
    Jones JH: Peritoneal dialysis. Br Med Bull 27: 165–169, 1971.PubMedGoogle Scholar
  15. 14.
    Vidt DG: Intermittent peritoneal dialysis. Ohio State Med J 64: 1149–1153, 1968.PubMedGoogle Scholar
  16. 15.
    Miller JH, Gipstein R, Margules R, Swartz M, Rubin ME: Automated peritoneal dialysis: analysis of several methods of peritoneal dialysis. Trans Am Soc Artif Intern Organs 12: 98–105, 1966.PubMedGoogle Scholar
  17. 16.
    Maxwell MW, Rockney RE, Kleeman CR, Twiss MR: Peritoneal dialysis. 1. Technique and application, JAMA 170: 917–924, 1959.Google Scholar
  18. 17.
    Boen ST: Kinetics of peritoneal dialysis: a comparison with the artificial kidney, Medicine 40: 243–287, 1961.Google Scholar
  19. 18.
    Gray H: Anatomy of the Human Body, 27th ed. C. Mayo (ed), Lea and Febiger, Philadelphia, pp 1253–1272, 1959.Google Scholar
  20. 19.
    Copenhauer WM, Johnson DD (1958) Bailey’s Textbook of Histology, 14th ed. Williams and Wilkins, Baltimore, 1958.Google Scholar
  21. 20.
    Grant JCB: An atlas of anatomy, 4th eds. Williams and Wilkins, Baltimore, 1956.Google Scholar
  22. 21.
    Baron MA: Structure of the Intestinal Peritoneum in Man. Am J Anat 69: 439–496, 1941.Google Scholar
  23. 22.
    Wayland H: Transmural and interstitial molecular transport. Proc Int’l. CAPD Symp. Paris, 1979. Excerpta Medica, pp 18–27, 1980.Google Scholar
  24. 23.
    Allen L, Weatherford T: Role of fenestrated basement membrane in lymphatic absorption from peritoneal cavity. Am J Physiol 197:551–554, 1959.PubMedGoogle Scholar
  25. 24.
    Karnovsky MJ: The ultrastructural basis of capillary permeability studied with perioxides as a tracer. J Cell Biol 35: 213–235, 1967.PubMedGoogle Scholar
  26. 25.
    Lieb WR, Stein WD: Biological membranes behave as non-porous polymeric sheets with respect to the diffusion of non-electrolytes. Nature 224: 240–243, 1969.PubMedGoogle Scholar
  27. 26.
    Nolph KD, Hano JE, teschan PE: Peritoneal sodium transport during hypertonic peritoneal dialysis: physiologic mechanisms and clinical implications. Ann Intern Med 70: 931–941, 1969.PubMedGoogle Scholar
  28. 27.
    Stolz ML, Nolph KD, Maher JF: Factors affecting calcium removal with calcium free peritoneal dialysis. J Lab Clin Med 78:389–398, 1971.Google Scholar
  29. 28.
    Henderson LW: Peritoneal ultrafiltration dialysis: enhanced urea transfer using hypertonic peritoneal dialysis fluid. J Clin Invest 45: 950–955, 1966.PubMedGoogle Scholar
  30. 29.
    Nolph KD, Rosenfeld PS, Powell JT, Danforth E: Peritoneal glucose transport and hyperglycemia during peritoneal dialysis. Am J Med Sci 259: 272–281, 1970.PubMedGoogle Scholar
  31. 30.
    Henderson LW, Nolph KD: Altered permeability of peritoneal membrane after using hypertonic peritoneal dialysis fluid. J Clin Invest 48: 992–1001, 1976.Google Scholar
  32. 31.
    Raja RM, Cantor RE, Boreyko C, Busheri H, Kramer MS, Rosenbaum JL: Sodium transport during ultrafiltration peritoneal dialysis. Trans Am Soc Artif Intern Organs 18: 429–435, 1972.PubMedGoogle Scholar
  33. 32.
    Kallen RJ: A method for approximating the efficacy of peritoneal dialysis for uremia. Am J Dis Child III: 156–160, 1966.Google Scholar
  34. 33.
    Esperanca MJ, Collins DL: Peritoneal dialysis efficiency in relation to body weight. J Pediat Surg O: 162–169, 1966.Google Scholar
  35. 34.
    Gosselin RE, Berndt WO: Diffusional transport of solutes through mesentery and peritoneum. J Theor Biol 3: 487–495, 1962.Google Scholar
  36. 35.
    Goldschmidtt ZH, Pote HH, Katz MA, Shear L: Effect of dialysate volume on peritoneal dialysis kinetics. Kidney Int, 5: 240–245, 1974.Google Scholar
  37. 36.
    Frank HA, Seligman AM, Fine JJ: Treatment of uremia after acute renal failure by peritoneal irrigation. J Am Med Assoc 130: 703–705.Google Scholar
  38. 37.
    Seligman AM, Frank HA, Fine JJ: Treatment of experimental uremia by means of peritoneal irrigation. J Clin Invest 25: 211–219, 1946.Google Scholar
  39. 38.
    Penzotti SC, Mattocks AM: Effects of dwell time, volume of dialysis fluid, and added accelerators on peritoneal dialysis of urea. J Pharm Sci 60: 1520–1522, 1971.PubMedGoogle Scholar
  40. 39.
    Pirpasopoulos M, Lindsay RM, Rahman M, Kennedy AC: A cost-effectiveness study of dwell times in peritoneal dialysis. Lancet 2: 1135–1136, 1972.PubMedGoogle Scholar
  41. 40.
    Gross M, McDonals HP: Effect of dialysate temperature and flow rate on peritoneal clearance. JAM A 202: 363–365, 1967.Google Scholar
  42. 41.
    Shinaberger JH, Shear L, Clayton LE, Barry FG, Knowlton M, Goldbaum LR: Dialysis for intoxications with lipid soluble drugs: enhancement of glutathimide extraction with lipid dialysate. Trans Am Soc Artif Intern Organs 11: 173–177, 1965.PubMedGoogle Scholar
  43. 42.
    Shinaberger JH, Shear L, Barry KG: Pertitoneal-extracorporeal recirculation dialysis: a technique for improving efficiency of peritoneal dialysis. Invest Urol 2: 555–560, 1965.PubMedGoogle Scholar
  44. 43.
    Rosenbaum JI, Mandanas R: Treatment of phenobarbitol intoxication in dogs with anion-recirculation peritoneal dialysis technique. Trans Soc Artif Intern Organs 13: 183–189, 1967.Google Scholar
  45. 44.
    Kablitz C, Stephen RL, Duffy DP, Jacobsen SC, Zelman A, Kolff WJ: Technological augmantation of peritoneal urea clearance: past, present, and future. Dial & Transpl 9(8): 741–744, 1980.Google Scholar
  46. 45.
    Popovich RP, Pyle WK, Moncrief JW, Decherd JF, Brooks S: Preliminary verification of the low dialysis clearance hypothesis via a novel equilibrium peritoneal dialysis technique. Proc 2nd Austral Conf Heat Mass Transfer 2: 217–223, 1977.Google Scholar
  47. 46.
    Popovich RP, Moncrief JW, Decherd JF, Bomar JB, Pyle WK: The definition of a novel portable/wearable equilibrium peritoneal dialysis technique. Abst Am Soc Artif Interm Organs 5: 64, 1976.Google Scholar
  48. 47.
    Popovich RP, Moncrief JW, Nolph KD, Ghods AJ, Twardowski ZJ, Pyle WK: Continuous ambulatory peritoneal dialysis. Ann Intern Med 88: 449–456, 1978.PubMedGoogle Scholar
  49. 48.
    Villarroel F: Kinetics of intermittent and continuous peritoneal dialysis. J Dial (4): 333–347, 1977.Google Scholar
  50. 49.
    Rescigno A, Segre G: Drug and tracer kinetics, Blaisdell, Waltham, Mass, 1966.Google Scholar
  51. 50.
    Mattocks AM: Accelerated removal of salicylate by additive in peritoneal dialysis fluid. J Pharm Sci 58: 595–598, 1969.PubMedGoogle Scholar
  52. 51.
    Popovich RP, Moncrief J W, Okutan M, Decherd JF: A model of the peritoneal dialysis system. Proc 25th Ann Conf on Engr in Med And Biol 14: 172, 1966.Google Scholar
  53. 52.
    Bomar JB, Decherd JF, Hlavinka DJ, Moncrief JW, Popovich RP: The elucidation of maximum efficiency minimum cost peritoneal dialysis protocols. Trans Am Soc Artif Intern Organs 20: 120–129, 1974.Google Scholar
  54. 53.
    Pyle WK, Popovich RP, Moncrief JW: In: Moncrief JW, Popovich RP (eds), Mass transfer evaluation in peritoneal dialysis. Masson NY, pp 32–52, 1981.Google Scholar
  55. 54.
    Pyle WK: Mass transfer in peritoneal dialysis. Ph.D. Dissertation, Univ. of Texas, 1981.Google Scholar
  56. 55.
    Popovich RP, Cristopher TG, Babb AL: The effects of membrane diffusion and ultrafiltration properties on hemo-dialyzer design and performance. Chem Eng Prog Symp Ser 67(114): 105–115, 1971.Google Scholar
  57. 56.
    Babb AL, Johansen PJ, Strand MJ, Tenckhoff H, Scribner BH: Bi-directional permeability of the human peritoneum to middle molecules. Proc 10th Cong Europ Dial Transpl Assoc, Vienna 10: 247–262, 1973.Google Scholar
  58. 57.
    Popovich RP, Moncrief JW: Clinical development of the low dialysis clearance hypothesis via equilibrium peritoneal dialysis. 1ste Ann Rep No. NO1-AM-6–2211, AK-CUP, NI-AMDD, NIH, Bethesda, MD, 1977.Google Scholar
  59. 58.
    Garred LJ, Canand B, Farrell PC: A simple kinetic model for assessing peritoneal mass transfer in chronic ambulatory peritoneal dialysis. Am Soc Artif Intern Organs J, 6(3): 131–137, 1983.Google Scholar
  60. 59.
    Lindholm B, Werynsky A, Bergstrom J: Kinetics of peritoneal dialysis with glycerol and glucose as osmotic agents. Trans Am Soc Artif Intern Organs, 33: 19–27, 1987.Google Scholar
  61. 60.
    Leypoldt JK, Parken HR, Frigon RPP, Henderson LW: Molecular size dependence of peritoneal transport, 110(2): 207–216, 1987.Google Scholar
  62. 61.
    Villarroel F, Popovich RP, Nolph KD: Evaluation of permeance in peritoneal dialysis. J Dial 2(4): 361–378, 1978.PubMedGoogle Scholar
  63. 62.
    Bomar JB: The transport of uremic metabolites in peritoneal dialysis. Ph.D. Dissertation, Univ of Texas.Google Scholar
  64. 63.
    Kedem, O, Katchalsky A: Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochem Biophys Acta 27: 229–246, 1958.PubMedGoogle Scholar
  65. 64.
    Katchalsky A, Curran PF: Nonequilibrium thermodynamics in biophysics. Harvard University Press, Cambridge, Mass, 1967.Google Scholar
  66. 65.
    Popovich RP, Pyle WK, Moncrief JW, Bomar JB: Peritoneal dialysis. Chronic replacement of kidney function. AlChE Symp Series, 75(187): 31–45, 1979.Google Scholar
  67. 66.
    Villarroel F, Klein E, Holland F: Solute flux in hemodialysis and hemofiltration membranes. Trans Am Soc Artif Intern Organs 23: 225–233, 1977.PubMedGoogle Scholar
  68. 67.
    Anderson JL, Quinn JA: Restricted transport in small pores: a model for steric exclusion and hindered particle motion. Biophys J 14: 130–150, 1974.PubMedGoogle Scholar
  69. 68.
    Brenner J, Gaydos LJ: The contrained brownian movement of spherical particles in cylindrical pores of comparable radius: models of the diffusive and convective transport of solute molecules in membranes and porous media. J Colloid Interface Sci 58: 312–356, 1977.Google Scholar
  70. 69.
    Bird RB, Steward WE, Lightfoot EN: Transport phenomena, John Wiley and Sons, New York, 1960.Google Scholar
  71. 70.
    Conte SD, de Boor C: Elementary numerical analysis, 2nd ed., McGraw-Hill, New York, 1965.Google Scholar
  72. 71.
    Brown KM: Computer-oriented methods for fitting tabular data in the least squares sense. Fall Joint Computer Conf., Natl Center for Atmospheric Res., Boulder, Colo, 1972.Google Scholar
  73. 72.
    Rubin J, Nolph KD, Popovich RP, Moncrief JW, Prowart B: Drainage volumes during continuous ambulatory peritoneal dialysis. J Am Soc Artif Intern Organs 2(2): 54–60, 1979.Google Scholar
  74. 73.
    Nolph KD, Sorkin MJ: A hypothesis to explain the ultrafiltration characteristics of peritoneal dialysis. Kidney Int (in press).Google Scholar
  75. 74.
    Popovich RP, Moncrief JW, Nolph KD, Pyle WK, Sawyer JW: Physiological Transport Parameters in Peritoneal and Hemodialysis. 3rd Ann Rep No NO1-AM-3–2205, AK-CUP, N1AMDD, N1H, Bethesda, Md, 1977.Google Scholar
  76. 75.
    Morgenstern BZ, Pyle WK, Gruskin AB, Kaiser BA, Perlman SA, Polinsky MS, Baluarte HJ: Convective characteristics of pediatric peritoneal dialysis. Perit Dialysis Bull 4: S155–S158, 1984.Google Scholar
  77. 76.
    Rubin J, Klein E, Bower JD: Investigation of net sieving coefficient of the peritoneal membrane during peritoneal dialysis. Am Soc Artif Intern Organs J 5: 9–15, 1982.Google Scholar
  78. 77.
    Yamashita A, Nagumo H, Hidai H, Kumano K, Iidaka K, Sakai T: Efficiency of diffusion and convective transport for solute removal in CAPD. Japan J Artif Organs 14: 111, 1985.Google Scholar
  79. 78.
    Randerson DH, Farrell PC: Mass transfer properties of the human peritoneum. Am Soc Artif Intern Organs J 3: 140–146, 1981.Google Scholar
  80. 79.
    Smeby LC, Wideroe TE, Jorstad S: Individual differences in water transport during continuous peritoneal dialysis. Am Soc Artif Intern Organs J 4: 17–27, 1981.Google Scholar
  81. 80.
    Jaffrin MY, Odell RA, Farrell PC: A model of ultrafiltration and glucose mass transfer kinetics in peritoneal dialysis. Artif Organs 11(3): 198–207, 1987.PubMedGoogle Scholar
  82. 81.
    Dedrik RL, Flessner MF, Collins JM, Schulz JS: Is the peritoneum a membrane? Am Soc Artif Intern Organs 5: 1–8, 1982.Google Scholar
  83. 82.
    Flessner MF, Dedrik RL, Schulz JS: A distributed model of peritoneal-plasma transprort: theoretical considerations. Am J Physiol 246: 597–607, 1984.Google Scholar
  84. 83.
    Flessner MF, Dedrik RL, Schulz JS: A distributed model of peritoneal-plasma transport: analysis of experimental data in the rat. Am J Physiol 248: 413–424, 1985.Google Scholar
  85. 84.
    Kjellstrand CM, Rosa AA, Shideman JR, Rodrigo F, Davin T, Lynch RE: Optimal dialysis frequency and duration: the ‘unphysiology hypothesis’. Kidney Int 13 (suppl. 8): S-120–S-124, 1978.Google Scholar
  86. 85.
    Arieff AJ, Guisado R, Massry SG: Uremic encephalopathy: studies on biochemical alterations in the brian. Kidney Int 7(Suppl):S-194–S-200, 1975.Google Scholar
  87. 86.
    Popovich RP, Hlavinka DJ, Bomar JB, Moncrief JW, Decherd JF: The consequences of physiological resistances on metabolite removal from the patient-artificial kidney system. Trans Am Soc Artif Intern Organs 21: 108–115, 1975.PubMedGoogle Scholar
  88. 87.
    Gotch FA, Sargent JA, Keen M, Lam M, Prowitt M, Grady M: Solute kinetics in intermittent dialysis therapy. 9th Ann Rep — Contractors Conf, pp 98–101, 1976.Google Scholar
  89. 88.
    Popovich RP, Pyle WK, Hiatt MP, McCullough WS, Moncrief JW: Metabolite transport kinetics in peritoneal dialysis. Proc Int CAPD Symp, Paris, Nov 2–3, 1979. Excerpta Medica, pp 28–33, 1980.Google Scholar
  90. 89.
    Popovich RP, Hiatt MP, Moncrief JW, Pyle WK: Mathematical in modeling and minimum treatment requirements peritoneal dialysis. Proc 3rd Capri Conf on chronic Uremia, 1980 (in press).Google Scholar
  91. 90.
    Moncrief JW: Personal communication, Aug. 28, 1980.Google Scholar
  92. 91.
    Randerson DH, Farell PC: Assessment of mass transfer properties of the peritoneal membrane during peritoneal dialysis. J Am Soc Artif Intern Organs, 1980 (in press).Google Scholar
  93. 92.
    Moncrief JW, Popovich RP, Nolph KD, Rubin J, Robson M, Dombros N, de Veber G, Oreopoulous DG: Clinical experience with continuous ambulatory peritoneal dialysis. J Am Soc Artif Intern Organs 2(3): 114–118, 1979.Google Scholar
  94. 93.
    Moncrief JW, Popovich RP: Peritoneal dialysis for a greater number of patients. Chap. In: Controversies in Nephrology, Schreiner GE, ed, Georgetown Universitv Press, Washington D.C., 1979.Google Scholar
  95. 94.
    Moncrief JW, Popovich RP: Continuous ambulatory peritoneal dialysis. Contrib Nephrol 17: 139–145, 1979 (Karger, Basel).PubMedGoogle Scholar
  96. 95.
    Balfe JW, Irwin MA, Oreopolous DG: An assessment of continuous ambulatory peritonean dialysis in children. Proc CAPD Int Symp II, May 9–10, 1980, Austin, Tx (in press).Google Scholar
  97. 96.
    Shmerling J, Kohaut E, Perry S: Cost and social benefits of CAPD in a pediatric population. Proc. CAPD Int Symp II, May 9–10, Austin, Tx (in press).Google Scholar
  98. 97.
    Kohaut EC, Alexander S: Ultrafiltration in the young patient on CAPD. Proc CAPD Int Symp II, May 9–10, 1980, Austin, Tx (in press).Google Scholar
  99. 98.
    Popovich RP, Pyle WK, Rosenthal DA, Alexander S, Balfe JW, Moncrief JW: Kinetics of Peritoneal dialysis in children. Proc CAPD Int Symp; II, May 9–10, 1980, Austun, Tx (in press).Google Scholar
  100. 99.
    Moncrief JW, Pyle WK, Simon P, Popovich RP: Hypertri-glycerdemia, Diabetes Mellitus, and Insulin administration in patients undergoing continuous ambulatory peritoneal dialysis. Proc CAPD Int Symp II, May 9–10, Austin, Tx (in press).Google Scholar
  101. 100.
    Arant BS, Edelman CM, Spitzer A: The congruence of creatinine and inulin clearances in children — use of the technicion auto analyzer. J Pediat 81(3): 559–561, 1972.PubMedGoogle Scholar
  102. 101.
    Clark LC, Thompson HL, Beek EI, Jacobson W: Excretion of creatine and creatinine by children. Am J Dis Child 81: 774–783, 1951.Google Scholar
  103. 102.
    Shull BC, Haughey D, Koup J, Baliah T, Li PK: A useful method for predicting creatinine clearance in children. Clin Chem 24(7): 1167–1169, 1979.Google Scholar
  104. 103.
    Popovich RP, Moncrief JW: Kinetic modeling of peritoneal transport. Contrib Nephrol 17: 59–72. (Karger, Basel).Google Scholar
  105. 104.
    Babb AL, Popovich RP, Christopher TG, Scribner BH: The genesis of the square meter-hour hypothesis. Trans Am Soc Artif Intern Organs 17: 81–91, 1971.PubMedGoogle Scholar
  106. 105.
    Popovich RP, Pyle WK, Hiatt MP, Moncrief JW: Comparative Kinetic Studies of Dialysis. Proc Northeastern Physicians Conf., New York, Oct 20, 1979 (in press).Google Scholar
  107. 106.
    Hiatt MP, Pyle WK, Moncrief JW, Popovich RP: A comparison of the relative efficacy of CAPD and hemodialysis in the control of solute concentration. Artif Organs 4(1): 37–43, 1980.PubMedGoogle Scholar
  108. 107.
    Kjellstrand CM, Evans RL, Peterson RJ, Shideman JR, von Hartitzsch B, Buselman TJ: The ‘Unphysiology’ of dialysis: a major cause of dialysis side effects? Kidney Int 7: 530–534, 1975.Google Scholar
  109. 108.
    Kjellstrand CM et al.: Proc 3rd Capri Conf on Uremia, 1980 (in press).Google Scholar
  110. 109.
    Nolph KD, Miller F, Rubin J, Popovich RP: New directions in peritoneal dialysis concepts and applications. Kidney Int 18(S-10): S-l1l–S-116.Google Scholar
  111. 110.
    Feriani M, Biasioli S, Chiaramonte A et al.: Anatomical bases of peritoneal permeability: a reappraisal. Int J Artif Organs 5: 345–348, 1982.PubMedGoogle Scholar
  112. 111.
    Nolph KD: Solute and water transport during peritoneal dialysis. Perspec Perit Dial 1: 4–8, 1983.Google Scholar
  113. 112.
    Garini G, Tagliavini D, Occhialini L: Mechanisms of transport and kinetics of the solutes in peritoneal dialysis. Recent Prog Med 73: 569–580, 1982.Google Scholar
  114. 113.
    Rubin J, Klein E, Bower JD: Investigation of the net sieving coefficient of the peritoneal membrane during peritoneal dialysis. ASA10 J 5: 9–15, 1982.Google Scholar
  115. 114.
    Indraprasit S, Namwongprom A, Sookriwongse C et al.: Effect of dialysate temperature on peritoneal clearances. Nephron 34: 45–47, 1983.PubMedGoogle Scholar
  116. 115.
    Maher J: Transport kinetics in peritoneal dialysis. Perit Dial Bull 3 (suppl): 4–6, 1983.Google Scholar
  117. 116.
    Nath IV, Sehgal S, Chugh KS et al.: Loss of immunoglobulins during peritoneal dialysis. J Assoc Physicians India 29: 927–929, 1982.PubMedGoogle Scholar
  118. 117.
    Ku K, Anderson R, Shoenfeld P: Kinetic modeling of urea in peritoneal dialysis. Dial Transpl 12: 374–381, 1983.Google Scholar
  119. 118.
    Oreopoulos DG: Criteria for adequacy of peritoneal dialysis. Perit Dial Bull 3: 1–2, 1983.Google Scholar
  120. 119.
    Diaz-Buxo JA, Farmer CD, Walker PJ et al.: Effects of hyperparathyroidism on peritoneal clearances. Trans Am Soc Artif Intern Organs 28: 276–279, 1982.PubMedGoogle Scholar
  121. 120.
    Grzegorzewska A, Baczyk K: Furosemide-induced increase in urinary and peritoneal excretion of uric acid during peritoneal dialysis in patients with chronic uremia. Artif Organs 6: 220–224, 1982.PubMedGoogle Scholar
  122. 121.
    Hall K, Meatherall B, Krahn J et al.: Clearance of quinidine during peritoneal dialysis. Am Heart J 104: 646–647, 1982.PubMedGoogle Scholar
  123. 122.
    Rubin J, Adair C, Barnes T et al.: Augmentation of peritoneal clearance by dipyridamole. Kidney Int 22: 658–661, 1982.PubMedGoogle Scholar
  124. 123.
    Lang HL, Nolph KD, McGary TJ: Enhancement of clearances by activated charcoal in an in vitro model of peritoneal dialysis. Clin Exp Dial Apheresis 6: 85–95, 1982.PubMedGoogle Scholar
  125. 124.
    Ratnu KS, Haldia KR, Panicker S et al.: A new technique — semicontinuous rapid flow, high volume exchange — for effective peritoneal dialysis in shorter periods. Nephron 31: 159–164, 1982.PubMedGoogle Scholar
  126. 125.
    Twardowski ZJ, Prowant BF, Nolph KD et al.: High volume, low frequency continuous ambulatory peritoneal dialysis. Kidney Int 23: 64–70, 1983.PubMedGoogle Scholar
  127. 126.
    Lopot F: Ultrafiltration characteristics of peritoneal dialysis. Vnitr Lek 29: 230–237, 1983.PubMedGoogle Scholar
  128. 127.
    Manuel A: Failure of ultrafiltration in patients on CAPD. Perit Dial Bull 3 (Suppl): 38–k41, 1983.Google Scholar
  129. 128.
    Slingeneyer A, Canaud B, Mion C: Permanent loss of ultrafiltration capacity of the peritoneum in long-term peritoneal dialysis: an epidemiological study. Nephron 33: 133–138, 1983.PubMedGoogle Scholar
  130. 129.
    Kraus MA, Shasha SM, Nemas M et al.: Ultrafiltration peritoneal dialysis and recirculating peritoneal dialysis with a portable kidney. Dial Transpl 12: 385–388, 1983.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Robert P. Popovich
  • Jack W. Moncrief
  • W. Keith Pyle

There are no affiliations available

Personalised recommendations