Peritoneal Ultrastructure

  • L. Gotloib
  • A. Shostak


Ninety years ago, Robinson [1], after summarizing more than two centuries of research, defined the diverse natural functions of the peritoneum as follows: a) to regulate fluid for nutrient and mechanical purposes; b) to facilitate motion; c) to minimize friction, and d) to conduct vessels and nerves to the viscera.


Peritoneal Dialysis Mesothelial Cell Peritoneal Fluid Original Magnification Open Arrow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Robinson B: The peritoneum. WT Keener Co., Chicago p 13, 1897.Google Scholar
  2. 2.
    Ganter, G: Uber die Beseitigung giftiger Stoffe aus dem Blute durch dialyse. Munchen Med Wchnschr 70: 1478–1480, 1923.Google Scholar
  3. 3.
    Boen ST: Peritoneal dialysis in clinical medicine. Charles C. Thomas. Springfield, 1964.Google Scholar
  4. 4.
    Tenckhoff H, Schechter H: A bacteriologically safe peritoneal access device for repeated dialysis. Trans Am Soc Artif Inter Organs 14: 181–187, 1968.Google Scholar
  5. 5.
    Popovich RP, Moncrief JW, Decherd JF, Bomar JB, Pyle WK: Preliminary verification of the low dialysis clearance hypothesis via a novel equilibrium peritoneal dialysis technique. Abst Am Soc Artif Intern Organs 5: 64, 1976.Google Scholar
  6. 6.
    Nolph KD, Sorkin M, Rubin, J, Arfania D, Prowant B, Fruto L, Kennedy D: Continuous ambulatory peritoneal dialysis: three-year experience at one center. Annals Int Med 92: 609–613, 1980.Google Scholar
  7. 7.
    Luschka H: Die Structure der serosen haute des menschen. Tubingen, 1851.Google Scholar
  8. 8.
    Putiloff PV: Materials for the study of the laws of growth of the human body in relation to the surface areas of different systems: the trial on Russian subjects of planigraphic anatomy as a mean of exact antropometry. Presented at the Siberian branch of the Russian Geographic Society. Omsk, 1886.Google Scholar
  9. 9.
    Wegner G: Chirurgische bemerkingen uber die peritoneal Hole, mit Besonderer Berucksichtigung der ovariotomie. Arch Klin Chir 20: 51–59, 1877.Google Scholar
  10. 10.
    Esperanca MJ, Collins DL: Peritoneal dialysis efficiency in relation to body weight. J Pediatric Surg 1: 162–169, 1966.CrossRefGoogle Scholar
  11. 11.
    Gotloib L, Digenis GE, Rabinovich S, Medline A, Oreopolous DG: Ultrastructure of normal rabbit mesentery. Nephron 34: 248–255, 1983.PubMedCrossRefGoogle Scholar
  12. 12.
    Gosselin RE, Berndt WO: Diffusional transport of solutes through mesentery and peritoneum. J Theor Biol 3: 487, 1962.CrossRefGoogle Scholar
  13. 13.
    Haar JL, Ackerman G A: A phase and electron microscopic study of vasculogenesis and erythropoiesis in the yolk sac of the mous. Anatom Record 170: 199–224, 1971.CrossRefGoogle Scholar
  14. 14.
    Ukeshima A, Hayashi Y, Fujimore T: Surface morphology of the human yolk sac: endoderm and mesothelium. 49: 483–494, 1986.Google Scholar
  15. 15.
    Puulmala RM: Morphologic comparison of parietal and visceral peritoneal epithelium in fetus and adult. Anatom Record 68: 327–330, 1937.CrossRefGoogle Scholar
  16. 16.
    Robertson JD: Molecular structure of biological membranes. In: A. Lima de Faria (ed), Handbook of Molecular Cytology. North Holland Pubi Amsterdam and London, p. 1404, 1969.Google Scholar
  17. 17.
    Kolossow A: Weber die struktur des endothels der pleuroperitoneal hole der blut und lymphgefasse. Biol Centralbl Bd 12: S87–94, 1892.Google Scholar
  18. 18.
    Odor L: Obervations of the rat mesothelium with the electron and phase microscopes. Am J Anat 95: 433–465, 1954.PubMedCrossRefGoogle Scholar
  19. 19.
    Felix DM, Dalton AJ: A comparison of mesothelial cells and macrophages in mice after the intraperitoneal inoculation of melanine granules. J Biophys and Biochem Cyt 2, Suppl part 2: 109–117, 1956.Google Scholar
  20. 20.
    Baradi AF, Hope J: Obervations on ultrastructure of rabbit mesothelium. Exper Cell Res 34: 33–44, 1964.CrossRefGoogle Scholar
  21. 21.
    Baradi AF, Crae SN: A scanning electron microscope study of mouse peritoneal mesothelium. Tissue Cell 8: 159, 1976.PubMedCrossRefGoogle Scholar
  22. 22.
    Whitaker D, Papadimitriou JM, Walters MNI: The mesothelium and its reactions: a review. CRC Critical reviews in Toxicology 10: 81–144, 1982.PubMedCrossRefGoogle Scholar
  23. 23.
    Fukata H: Electron microscopie study on normal rat peritoneal mesothelium and its changes in adsorption of particulate iron dextran complex. Acta Pathol Japonica 13: 309–325, 1963.Google Scholar
  24. 24.
    Lieberman-Meffet D, White H: The greater omentum: anatomy, physiology, pathology, surgery with an historical sur-very. Springer-Verlag, Berlin, p 6.Google Scholar
  25. 25.
    Madison LD, Bergstrom MU, Porter B, Torres R, Shelton E: Regulation of surface topography of mouse peritoneal cells. J Cell Biol 82: 783, 1979.PubMedCrossRefGoogle Scholar
  26. 26.
    Gotloib L, Shostak A: Ultrastructural morphology of the peritoneum: new findings and speculations on transfer of solutes and water during peritoneal dialysis. Perit Dial Bull (in press).Google Scholar
  27. 27.
    Gotloib L: Anatomical basis for peritoneal permeability. In: La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C (eds), Peritoneal Dialysis. Wichtig Ed, Milano, pp 3–10.Google Scholar
  28. 28.
    Gotloib L, Shostak A, Jaichenko J: Ruthenium red stained anionic charges of rat and mice, mesothelial cells and basal lamina: the peritoneum is a negatively charged dialyzing membrane. Nephron (in press).Google Scholar
  29. 29.
    Luft JH: Fine structure of capillary and endocapillary layer as revealed by ruthenium ed. Fed Proc 25: 1173–1183, 1966.Google Scholar
  30. 30.
    Gotloib L, Bar-Sella P, Jaichenko J, Shostak A: Ruthenium red stained polyanionic fixed charges in peritoneal micro-vessels. Nephron 47: 22–28, 1987.PubMedCrossRefGoogle Scholar
  31. 31.
    Curry FE, Michel CC: A fiber matrix model of capillary permeability. Microvasc Res 20: 96–99, 1980.PubMedCrossRefGoogle Scholar
  32. 32.
    Moog F: The lining of the small intestine. Scientific American 2455: 116–125, 1981.Google Scholar
  33. 33.
    Gotloib L: Anatomy of the peritoneal membrane. In: La Greca G, Biasoli G, Ronco C (eds), Wichtig Ed, Milan, pp 17–30, 1982.Google Scholar
  34. 34.
    Leak LV: Distribution of cell surface charges on mesothelium and lympathic endothelium. Microvasc Res 31: 18–30, 1986..PubMedCrossRefGoogle Scholar
  35. 35.
    Lewis WH: Pinocutosis. Bull Johns Hopkins Hosp 49: 17–23, 1931.Google Scholar
  36. 36.
    Casley-Smith JR: The dimensions and numbers of small vesicles in cells, endothelial and mesothelial and the significance of these for endothelial permeability. J Microscopy 90:251–269, 1969.CrossRefGoogle Scholar
  37. 37.
    Casley-Smith JR, Chin JC: The passage of cytoplasmic vesicles across endothelial and mesothelial cells. J Microscopy 93: 167–189, 1971.CrossRefGoogle Scholar
  38. 38.
    Fedorko ME, Hirsch JG, Fried B: Studies on transport of macromolecules and small particles across mesothelial cells of the mouse omentum. Exp Cell Res 63: 313–323, 1971.CrossRefGoogle Scholar
  39. 39.
    Simionescu N, Simionescu M, Palade GE: Structural basis of permeability in sequential segments of the microvasculature. II. Pathways followed by microperoxidase across the endothelium. Microvasc Res 15: 17–36, 1978.PubMedCrossRefGoogle Scholar
  40. 40.
    Palade GE, Simionescu M, Simionescu N: Structural aspects of the permeability of the microvascular endothelium. Acta Physiol Scand Suppl 463: 11–32, 1979.PubMedGoogle Scholar
  41. 41.
    Palade GE: Fine structure of blood capillaries. J Appl Phys 24: 1424, 1953.Google Scholar
  42. 42.
    Florey HW: The transport of materials across the capillary wall. Quart J Exper Physiol 49: 117–128, 1964.Google Scholar
  43. 43.
    Pappenheimer JR, Renkin EM, Borrero LM: Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am J Physiol 167: 13–46, 1951.PubMedGoogle Scholar
  44. 44.
    Frokjaer-Jensen J: The plasmalemmal vesicular system in capillary endothelium. Prog Appi Microcirc 1: 17–34, 1983.Google Scholar
  45. 45.
    Wagner RC, Robinson CS: High voltage electron microscsopy of capillary endothelial vesicles. Microvascc Res 28: 197–205, 1984.CrossRefGoogle Scholar
  46. 46.
    Simionescu N, Simionescu M, Palade GE: Differentiated microdomains on the luminal surface of capillary endothelium. I. Preferential distribution of anionic sites. J Cell Biol 90:605–613, 1981.PubMedCrossRefGoogle Scholar
  47. 47.
    Steinman RM, Mellman IS, Muller WA, Conn ZA: Endo-cytosis and the recycling of plasma membrane. J Cell Biol 96: 1–27, 1983.PubMedCrossRefGoogle Scholar
  48. 48.
    Shea SM, Karnovesky MJ: Brownian motion: a theoretical explanation for the movement of vesicles across the endothelium. Nature, London 212: 353–354, 1966.CrossRefGoogle Scholar
  49. 49.
    Simionescu M, Simionescu N, Palade GE: Morphometric data on the endothelium of blood capillaries. J Cell Biol 60: 128–152, 1974.PubMedCrossRefGoogle Scholar
  50. 50.
    Wagner JC, Johnson NF, Brown DG, Wagner MMF: Histology and ultrastructure of serially transplanted rat mesotheliomas. Brit J Cancer 46: 294–299, 1982.PubMedCrossRefGoogle Scholar
  51. 51.
    Petersen OW, Van Deurs B: Serial section analysis of coated pits and vesicles involved in adsorptive pinocytosis in cultered fibroblasts. J Cell Biol 96: 277–281, 1983.PubMedCrossRefGoogle Scholar
  52. 52.
    Peters KR, Carley WW, Palade GE: Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure. J Cell Biol 101: 2233–2238, 1985.PubMedCrossRefGoogle Scholar
  53. 53.
    Simionescu M, Simionescu N, Silbert J, Palade G: Differentiated microdomains on the luminal surface of the capillary endothelium. II. Partial characterization of their anionic sites. J Cell Biol 90: 614–621, 1981.PubMedCrossRefGoogle Scholar
  54. 54.
    Pearse BMF: Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sci USA 73: 1255–1259, 1976.PubMedCrossRefGoogle Scholar
  55. 55.
    Goldstein JL, Brown MS, Anderson RGW, Russell, DW, Schneider WJ: Receptor mediated endocytosis: concepts emerging from the LDL receptor system. Ann Rev Cell Biol 1: 1–39, 1985.PubMedCrossRefGoogle Scholar
  56. 56.
    Pastan I, Willingham MC: The pathway of endocytosis. In: Pastan I, Willingham MC (eds), Endocytosis. Plenum Press, New York, pp 1–44, 1985.Google Scholar
  57. 57.
    Ghitescu L, Fixman A, Simionescu M, Simionescu N: Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor mediated trans-cytosis. J Cell Biol 102: 1304–1311, 1986.PubMedCrossRefGoogle Scholar
  58. 58.
    Henle FGJ: Splacnologie. Vol II, p 175, 1875.Google Scholar
  59. 59.
    Simionescu M, Simionescu N: Organization of cell junctions in the peritoneal mesothelium. J Cell Biol 74: 98, 1977.PubMedCrossRefGoogle Scholar
  60. 60.
    Von Recklinghausen FD: Zur Fettresorption. Arch of Path Anat u Physiol, Bd 26: S172–208, 1863.Google Scholar
  61. 61.
    Bizzozero G, Salvioli G: Sulla suttura della membrane sierosa e particolarmente del peritoneo diaphragmatico. Giornale della R Acad di Medicina di Torino. 19: 466–470, 1876.Google Scholar
  62. 62.
    Allen L: The peritoneal stornata. The Anat Record 67: 89–103, 1937.CrossRefGoogle Scholar
  63. 63.
    French JE, Florey HW, Morris B: The adsorption of particles by the lympathics of the diaphragm. Quarterly J Exper Physiol 45: 88–102, 1959.Google Scholar
  64. 64.
    Tourneux F, Herrman G: Recherches sur quelques epitheliums plats dans la serie animale (Deuxieme partie). J de L’Anat et de la Physiol. 12: 386–424, 1876.Google Scholar
  65. 65.
    Kolossow A: Uber die struktur des pleuroperitoneal und gefassepithels (endothels). Arch f Mikr Anat 42: 318–383, 1893.CrossRefGoogle Scholar
  66. 66.
    Simer PM: The passage of particulate matter from the peritoneal cavity into the lymph vessels of the diaphragm. The Anatom Record 101: 333–351, 1948.CrossRefGoogle Scholar
  67. 67.
    Leak LW, Just EE: Permeability of peritoneal mesothelium. J Cell Biol 70: 423a, 1976.Google Scholar
  68. 68.
    Tsilibarry EC, Wissig SL: Absorption from the peritoneal cavity: SEM study of the mesothelium covering the peritoneal surface of the muscular portion of the diaphragm. Am J Anat 149: 127–133, 1977.CrossRefGoogle Scholar
  69. 69.
    Yoffey JM, Courtice FC: Lymphatics, lymph and lymphoid tissue. Edward Arnold Ltd, London, p 176, 1956.Google Scholar
  70. 70.
    Andrews PM, Porter KR: The ultrastructural morphology and possible functional significance of mesothelial microvilli. Anat Rec 177:409–414, 1973.PubMedCrossRefGoogle Scholar
  71. 71.
    Ghadially FN: Ultrastructural pathology of the cell. Butter-worths, London and Boston, p 403, 1978.Google Scholar
  72. 72.
    Todd RB, Bowman W: The physiological anatomy and physiology of man. Vols I and II. London. 1845 and 1846.Google Scholar
  73. 73.
    Muscatello G: Uber den Bau und das Aufsaugunsvermogen des Peritanaums. Virchows Archiv f Path Anat, Bd 142: 327–359, 1895.CrossRefGoogle Scholar
  74. 74.
    Baron MA: Structure of the intestinal peritoneum in man. Am J Anat 69: 439–496, 1941.CrossRefGoogle Scholar
  75. 75.
    Maximow A: Bindgewebe und blutbildende gewebe. Hand-buch der mikroskopischen Anatomie des menschen. Bd 2 T 1: S232–583. v. Mollendorf. 1927.Google Scholar
  76. 76.
    Gotloib L, Shostak A, Bar-Sella P, Eiali V: Reduplicated skin and peritoneal blood capillaries and mesothelical basement membrane in aged non-diabetic chronic uremic patients. Perit Dial Bulletin 4: S28, 1984.Google Scholar
  77. 77.
    Gersh I, Catchpole HR: The organization of ground substances and basement membrane and its significance in tissue injury, disease and growth. Am J Anat 85: 457–522, 1949.PubMedCrossRefGoogle Scholar
  78. 78.
    Williamson JR, Vogler NJ, Kilo Ch: Regional variations in the width of the basement membrane of muscle capillaries in man and giraffe. Am J Path 63: 359–367, 1971.PubMedGoogle Scholar
  79. 79.
    Vracko R: Skeletal muscle capillaries in nondiabetics. A quantitative analysis. Circulation 16: 285–297, 1970.Google Scholar
  80. 80.
    Parthasarathy N, Spire RG: Effect of diabetes on the glycosaminoglycan component of the human glomerular basement membrane. Diabetes 31: 738–741, 1982.PubMedCrossRefGoogle Scholar
  81. 81.
    Vracko R, Pecoraro RE, Carter WB: Overview article: Basal lamina of epidermis, muscle fibers, muscle capillaries, and renal tubules; changes with aging and in diabetes mellitus. Ultrast Pathol 1,559–574, 1980.CrossRefGoogle Scholar
  82. 82.
    Vracko R: Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. A review. Am J Pathol 77: 313–346, 1974.Google Scholar
  83. 83.
    Hruza Z: Connective tissue. In: Kaley G, Altura BM (eds), Microcirculation. Univ Park Press, Baltimore. Vol 1, pp 167–183, 1977.Google Scholar
  84. 84.
    Comper WD, Laurent TC: Physiological function of connective tissue polysaccharides. Physiol Reviews 58: 255–315, 1978.Google Scholar
  85. 85.
    Simionescu N: Cellular aspects of transcapillary exchange. Physiol Reviews 63: 1536–1579, 1983.Google Scholar
  86. 86.
    Wolff JR: Ultrastructure of the terminal vascular bed as related to function. In: Kaley G, Altura BM (eds), Microcirculation. University Park Press, Baltimore. Vol I, pp 95–130, 1977.Google Scholar
  87. 87.
    87- Majno G: Ultrastructure of the vascular membrane. Handbook of Physiology. Section II — Circulation. Vol III. Am Physiol Soc Washington DC, pp 2293–2375, 1965.Google Scholar
  88. 88.
    Gotloib L, Shostak A, Bar-Sella P, Eiali V: Fenestrated capillaries in human parietal and rabbit diaphragmatic peritoneum. Nephron 41: 200–202, 1985.PubMedCrossRefGoogle Scholar
  89. 89.
    Gotloib L, Shostak A, Jaichenko J. Unpublished observations.Google Scholar
  90. 90.
    Gotloib L, Shostak A, Bar-Sella P, Eiali V: Heterogeneous density and ultrastructure of rabbit’s microvasculature. Int J Artif Organs 7: 123–125, 1984.PubMedGoogle Scholar
  91. 91.
    Nolph KD, Miller F, Rubin J, Popovich R: New directions in peritoneal dialysis concepts and applications. Kidney Int 18, Suppl 10: S111-S116, 1980.Google Scholar
  92. 92.
    Rhodin YAG: Ultrastructure of mammalian venous capillaries, venules and small collecting veins. J Ultrast Research 25: 452–500, 1968.CrossRefGoogle Scholar
  93. 93.
    Gotloib L, Shostak A, Jaichenko J: Loss of mesothelial and microvascular fixed anionic charges during murine experimentally induced septic peritonitis. Presented at the IV Int Symposium on Peritoneal Dialysis, Venice, 1987. 1987.Google Scholar
  94. 94.
    Simionescu M, Simionescu N, Palade GE: Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors. J Cell Biol 94: 406–413, 1982.PubMedCrossRefGoogle Scholar
  95. 95.
    Schneeberger EE, Hamelin M: Interactions of serum proteins with lung endothelial glycocalyx: its effect on endothelial permeability. Am J Physiol 247: H206-H217, 1984.PubMedGoogle Scholar
  96. 96.
    Bundgaard M, Frokjaer-Jensen J: Functional aspects of the ultrastructure of terminal blood vessels: a quantitative study on consecutive segments of the frog mesenteric microvasculature. Microvasc Res 23: 1–30, 1982.PubMedCrossRefGoogle Scholar
  97. 97.
    Palade GE: Transport in quanta across the endothelium of blood capillaries. Anat Ree 116: 254, 1960.Google Scholar
  98. 98.
    Milici AJ, L’hernault N, Palade GE: Surface densities of diaphragmed fenestrae and transendothelial channels in different murine capillary beds. Circ Res 56, 709–717, 1985.PubMedGoogle Scholar
  99. 99.
    Simionescu M, Simionescu N, Palade GE: Sulfated glyco-saminoglycans are major components of the anionic sites of fenestral diaphragms in capillary endothelium. J Cell Biol 83: 78a, 1979.Google Scholar
  100. 100.
    Milici AJ, L’Hernault N: Variation in the number of fenestrations and channels between fenestrated capillary bed. J Cell Biol 97: No. 5, 336, 1983.Google Scholar
  101. 101.
    Peters KR, Milici AJ: High resolution scanning electron microscopy of the luminal surface of a fenestrated capillary endothelium. J Cell Biol 97: 336a, 1983.Google Scholar
  102. 102.
    Bankston PW, Milici AJ: A Survey of the binding of po-lycationic ferritin in several fenestrated capillary beds: indication of heterogeneity in the luminal glycocalyx of fenestral diaphragms. Microvasc Res 26: 36–48, 1983.PubMedCrossRefGoogle Scholar
  103. 103.
    Farquhar MG, Palade GE: Junctional complexes in various epithelia. J Cell Biol 17: 375–442, 1963.PubMedCrossRefGoogle Scholar
  104. 104.
    Simionescu M, Simionescu N, Palade G: Segmental differentiations of cell junctions in the vascular endothelium. J Cell Biol 67: 863–885, 1975.PubMedCrossRefGoogle Scholar
  105. 105.
    Thorgeirsson G, Robertson AL Jr: The vascular endothelium. Pathobiologic significance. Am J Pathol 95: 801–848, 1978.Google Scholar
  106. 106.
    Renkin EM: Multiple ways of capillary permeability. Circ Research 41: 735–743, 1977.Google Scholar
  107. 107.
    Bearer EL, Orci L: Endothelial fenestral diaphragms: a quick-freeze deep-etch study. J Cell Biol 100: 418–428, 1985.PubMedCrossRefGoogle Scholar
  108. 108.
    Nolph KD: The peritoneal dialysis system. Contr Nephrol 17:44–50, 1979.Google Scholar
  109. 109.
    Mactier RA, Khanna R, Twardowski ZJ, Nolph KD: Role of peritoneal lymphatic absorption in peritoneal dialysis. Kidney Int 32: 165–172, 1987.PubMedCrossRefGoogle Scholar
  110. 110.
    Casley-Smith JR: The role of the endothelial intercellular junctions in the functioning of the initial lymphatics. Angiologia 9: 106, 131, 1972.Google Scholar
  111. 111.
    Crone Ch: Exchange of molecules between plasma, interstitial tissue and lympathics. Pflugers Arch 336: S65-S79, 1972.CrossRefGoogle Scholar
  112. 112.
    Hauck G: Functional aspects of the topical relationship between blood capillaries and lymphatics of the mesentery. Pflugers Arch 339: 251–256, 1973.PubMedCrossRefGoogle Scholar
  113. 113.
    Hauck G: Permeability of the mesenteric vasculature. Bibl Anat 13:9–12, 1975.PubMedGoogle Scholar
  114. 114.
    Rhodin JAG, Sue SL: Combined intravital microscopy and electron microscopy of the blind beginnings of the mesenteric lymphatic capilalries of the rat mesentery. Acta Physiol Scand 463:51–58, 1979.Google Scholar
  115. 115.
    Hauck G: The connective tissue space in view of lymphology. Experientia 38: 1121–1122, 1982.PubMedCrossRefGoogle Scholar
  116. 116.
    Leak LV: Electron microscopic observations on lymphatic capillaries and the structural components of the connective tissue-lymph interface. Microvasc Res 2, 361–391, 1970.PubMedCrossRefGoogle Scholar
  117. 117.
    Leak LV: Studies on the permeability of lymphatic capillaries. J Cell Biol 50: 300–323, 1971PubMedCrossRefGoogle Scholar
  118. 118.
    Jones WR, O’Morchoe PJ, O’Morchoe CCC: The organization of endocytotic vesicles in lymphatic endothelium. Microvasc Res 25: 286–299, 1983.PubMedCrossRefGoogle Scholar
  119. 119.
    Casley-Smith JR: The functioning and interrelationships of blood capillaries and lymphatics. Experientia 32: 1–12, 1976.PubMedCrossRefGoogle Scholar
  120. 120.
    Leak LV, Burke JF: Fine structure of lymphatic capillaries and the adjoining connective tissue area. Am J Anat 118: 785–809, 1966.PubMedCrossRefGoogle Scholar
  121. 121.
    Leak LV, Burke JF: Ultrastructural studies on the lymphatic anchoring filaments. J Cell Biol 36: 129–149, 1968.CrossRefGoogle Scholar
  122. 122.
    Jones WR, O’Morchoe CCC, Jarosz HM, O’Morchoe PJ: Distribution of charged sites on lymphatic endothelium. Lymphology 19: 5–14, 1986.PubMedGoogle Scholar
  123. 123.
    Hortsmann E: Anatomie and physiologie des lymphgefab-systems in Bauchraum. In: H Bartelheimer und N Hesig. Actuelle Gastroenterologie Verh Stuttgart. Thieme 1968, 1967.Google Scholar
  124. 124.
    Wayland H, Silbergberg A: Meeting report: blood to lymph transport. Microvasc Res 15, 367–374, 1978.PubMedCrossRefGoogle Scholar
  125. 125.
    Haller A: Primae linae physiologiae in usum Praelectionum Academicarum avetae et emendato. Gottingae, Capit 25: p 421, 1751.Google Scholar
  126. 126.
    Vajda J: Innervation of lymph vessels. Acta Morphol Acad Sci Hung 14: 197–208, 1966.PubMedGoogle Scholar
  127. 127.
    Ohkashi T, Kobayashi S, Tsukahara S, Azuma T: Innervation of bovine mesenteric lymphatics from the histochemical point of view. Microvasc Res 24: 377–385, 1982.CrossRefGoogle Scholar
  128. 128.
    Furness JB: Arrangement of blood vessels and their relation with adrenergic nerves in the rat mesentery. J Anat 115: 347–364, 1973.PubMedGoogle Scholar
  129. 129.
    Beattie JM: The cells of inflammatory exudations: an experimental research as to their function and density, and also as to the origin of the mononucleated cells. J Path Bacteriol 8: 130–177, 1903.CrossRefGoogle Scholar
  130. 130.
    Durham HE: The mechanism of reaction to peritoneal infection. J Path Bacteriol 4: 338–382, 1897.CrossRefGoogle Scholar
  131. 131.
    Josey AL: Studies in the physiology if the eosinophil. V. The role of the eosinophil in inflammation. Folia Haematol 51: 80–95, 1934.Google Scholar
  132. 132.
    Webb RL: Changes in the number of cells within the peritoneal fluid of the white rat, between birth and sexual maturity. Folia Haematol 51: 445–451, 1934.Google Scholar
  133. 133.
    Padawer J, Gordon AS: Cellular elements in the peritoneal fluid of some mammals. The Anatom Record 124: 209–222, 1956.CrossRefGoogle Scholar
  134. 134.
    Fruhman G J: Neutrophil mobilization into peritoneal fluid. Blood 16: 1753–1761, 1960.PubMedGoogle Scholar
  135. 135.
    Seeley SF, Higgins GM, Mann FC: The cytologic response of the peritoneal fluid to certain substances. Surgery 2: 862–876, 1937.Google Scholar
  136. 136.
    Montgomery LG: Preliminary studies of the cells of the peritoneal fluid in certain laboratory animals. Proc Staff Meetings of the Mayo CLinic 7: 589–591, 1932.Google Scholar
  137. 137.
    Bercovici B, Gallily R: The cytology of the human peritoneal fluid. Cytol 22, 124–127, 1978.Google Scholar
  138. 138.
    Becker S, Halme J, Haskill S: Heterogeneity of human peritoneal macrophages: cytochemical and flow cytometric studies. J Reticuloendothelial Soc (RES) 33: 127–138, 1983.Google Scholar
  139. 139.
    De Brux JA, Dupre-Froment J, Mintz M: Cytology of the peritoneal fluids sampled by coelioscopy or by cul de sac puncture. Its value in gynecology. Acta Cytol 12: 395–403, 1968.PubMedGoogle Scholar
  140. 140.
    Fruhmann GJ: Adrenal steroids and neutrophil mobilization. Blood 20: 355–363, 1962.Google Scholar
  141. 141.
    Spriggs AI, Boddington MM: The cytology of effusions. Grune-Straton, Ine New York. Second Edition, pp 5–17, 1968.Google Scholar
  142. 142.
    Domagala W, Woyke S: Transmission and scanning electron microscopic studies of cells in effusions. Acta Cytol 19: 214–224, 1975.PubMedGoogle Scholar
  143. 143.
    Efrati P, Nir E: Morphological and cytochemical investigation of human mesothelial cells from pleural and peritoneal effusions. A light and electron microscopy study. Israel J Med Sciences 12: 662–673, 1976.Google Scholar
  144. 144.
    Bewtra Ch, Greer KP: Ultrastructural studies of cells in body cavity effusions. Acta Cytol 29: 226–238, 1985.PubMedGoogle Scholar
  145. 145.
    Chapman JS, Reynolds RC: Eosinophilic response to intra-peritoneal blood. J Lab Clin Med 51: 516–520, 1958.PubMedGoogle Scholar
  146. 146.
    Northover BJ: The effect of various anti-inflammatory drugs on the accumulation of leucocytes in the peritoneal cavity of mice. J Pathol and Bacteriol 88: No. 1, 332–335, 1964.CrossRefGoogle Scholar
  147. 147.
    Hurley JV, Ryan GB, Friedman A: The mononuclear response to intrapleural injection in the rat. J Path Bact 91: 575–587, 1966.PubMedCrossRefGoogle Scholar
  148. 148.
    Gotloib L, Mines M, Garmizo AL, Rodoy, Y: Peritoneal dialysis using the subcutaneous intraperitoneal prosthesis. Dial and Transp 8: No. 3, 217–220, 1979.Google Scholar
  149. 149.
    Cichoki T, Hanicki Z, Sulowicz W, Smolensky O, Kopec J, Zembala M: Output of peritoneal cells into peritoneal dialysate. Nephron 35, 175–182, 1983.CrossRefGoogle Scholar
  150. 150.
    Nolph KD, Sorkin MI, Prowant BF, Kennedy JM, Everett ED: Asymptomatic eosinophilic peritonitis in continuous ambulatory peritoneal dialysis. Dial and Trans 11: 309–313, 1982.Google Scholar
  151. 151.
    Humayun HM, Todd SS, Daugisrdas JT, Ghandi VC, Popli S, Robinson JA, Hano JE, Zayas I: Peritoneal fluid eosin-ophilia in patients undergoing maintenance peritoneal dialysis. Arch Int Med 141: 1172, 1981.CrossRefGoogle Scholar
  152. 152.
    Leak LV: Interaction of mesothelium to intraperitoneal stimulation. Lab Invest 48: 479–490, 1983.PubMedGoogle Scholar
  153. 153.
    Raftery AT: Regeneration of parietal and visceral peritoneum: an electron microscopical study. J Anat 115: 375–392, 1973.PubMedGoogle Scholar
  154. 154.
    Raftery AT: Mesothelial cells in peritoneal fluid. J Anat 115: 237–253, 1973.PubMedGoogle Scholar
  155. 155.
    Koss LG: Diagnostic cytology and its histopathologic bases. Third Edition. Lippincot, Philadelphia. Chapters 16–25, 1979.Google Scholar
  156. 156.
    Ryan GB, Grobety J, Majno G: Postoperative peritoneal adhesions: a study of the mechanisms. Am J Pathol 65: 117–148, 1971.PubMedGoogle Scholar
  157. 157.
    Ryan GB, Grobety J, Majno G: Mesothelial injury and recovery. Am J Pathol 71: 93–112, 1973.PubMedGoogle Scholar
  158. 158.
    Di Paolo N, Sacchi G, De Mia M, Gaggiotti E, Capotoude L, Rossi P, Bernini M, Pucci AM, Ibba L, Sabatelli P, Alessandrini C: Does Dialysis modify the peritoneal structure? In: La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C (eds), Peritoneal Dialysis. Wichtig Ed, Milano. Pages 11–24.Google Scholar
  159. 159.
    Dobbie JW, Zaki M, Wilson L: Ultrastructural studies on the peritoneum with special reference to chronic ambulatory peritoneal dyalisis. Scott Med J 26: 213–223, 1981.PubMedGoogle Scholar
  160. 160.
    Verger C, Brunschvicg O, Le Charpentier Y, Lavergne A, Vantelon J: Structural and ultrastructural peritoneal membrane changes and permeability alterations during continuous ambulatory peritoneal dialysis. Proc EDTA 18: 199–205, 1981.Google Scholar
  161. 161a.
    Tenckhoff H: Chronic peritoneal dialysis manual. Univ Washington School of Medicine. Seattle, pp 5 1974.Google Scholar
  162. 161b.
    Tenckhoff H: Chronic peritoneal dialysis manual. Univ Washington School of Medicine. Seattle, pp 634 1974.Google Scholar
  163. 161c.
    Tenckhoff H: Chronic peritoneal dialysis manual. Univ Washington School of Medicine. Seattle, pp 79, 1974.Google Scholar
  164. 162.
    Gandhi VC, Humayun HM, Todd S, Daugirdas JT, Jablokow VR, Shunzaburo I, Geis P, Hano JE: Sclerotic thickening of the peritoneal membrane in maintenance peritoneal dialysis patients. Arch Int Med 140: 1201–1203, 1980.CrossRefGoogle Scholar
  165. 163.
    Slingeneyer A, Canaud B, Mourad G, Beraud JJ, Balmes M, Mion C: Sclerosing peritonitis (SP): late and severe complications of long term home peritoneal dialysis (HPD). Abstr 29th Ann Meet Am Soc Artif Intern Organs, p 66, 1982.Google Scholar
  166. 164.
    Ing TS, Daugirdas JT, Gandh VC: Peritoneal sclerosis in peritoneal dialysis patients. Am J Nephrol 4: 173–176, 1984.PubMedCrossRefGoogle Scholar
  167. 165.
    Battle W: Intestinal obstruction coming on four years after the operation of ovariotomy. Lancet 1: 818–820, 1883.Google Scholar
  168. 166.
    Brown P, Baddeley H, Read AE, Davies JD, Mc Garry J: Sclerosing peritonitis, an unusual complication of an adrenergic blocking drug (practolol). Lancet II: 1477–1481, 1974.CrossRefGoogle Scholar
  169. 167.
    Junor BJR, Briggs JD, Forwell MA, Dobbie JW, Henderson I: Sclerosing peritonitis. The contribution of chlorhexidine in alcohol. Pert Dial Bulletin 5: 101–104, 1985.Google Scholar
  170. 168.
    Myhre-Jensen O, Bergmann Larsen S, Astrup T: Fibrinolytic activity in serosal and synovial membranes. Rats, guinea pigs and rabbits. Arch Pathol 88: 623–630, 1969Google Scholar
  171. 169.
    Gervin AS, Puckett ChL, Silver D: Serosal hypofibrinolysis. A cause of postoperative adhesions. Am J Surg 1225: 80–88, 1973.CrossRefGoogle Scholar
  172. 170.
    Buckman RF, Woods M, Sargent L, Gervin AS: A unifying pathogenetic mechanism in the etiology of intraperitoneal adhesions. J Surg Res 20, 1–5, 1976.PubMedCrossRefGoogle Scholar
  173. 171.
    Dobbie JW, Zaki MA: The ultrastructure of the parietal peritoneum in normal and uremic man and in patients on CAPD. In: Maher JF, Winchester JF (eds), Frontiers on Peritoneal Dialysis. Field, Richh and assoc. New York, p 3, 1986.Google Scholar
  174. 172.
    Gotloib L, Shostak A, Bar-Sella P, Cohen R: Continuous mesothelial injury and regeneration during long term peritoneal dialysis. Perit Dial Bulletin (in press).Google Scholar
  175. 173.
    Gotloib L, Shostak A, Jaichenko J: Continuous mesothelial injury and regeneration. A possible role of the non enzymatic degradation of glucose. Presented at the IV Congress of the Int Soc of Peritoneal Dialysis, Venice.Google Scholar
  176. 174.
    Eskeland G, Kjaerheim A: Regeneration of parietal peritoneum in rats. 2. An electron microscopical study. Acta Pathol Microbiol Scand 68, 379–395, 1966.PubMedGoogle Scholar
  177. 175.
    Watters WB, Buck RC: Scanning electron microscopy of mesothelial regeneration in the rat. Lab Invest 26, 604–609, 1972.PubMedGoogle Scholar
  178. 176.
    Whitaker D, Padadimitriou J: Mesothelial healing: morphological and kinetic investigations. J Pathol Bact 73, 1–10, 1957.CrossRefGoogle Scholar
  179. 177.
    Renvall SY: Peritoneal metabolism and intrabdominal adhesion formation during experimental peritonitis. Acta Chi-rurg Scanb Suppl 503, 1–48, 1980.Google Scholar
  180. 178.
    Ellis H, Harrison W, Hugh TB: The healing of peritoneum under normal and pathological conditions. Brit J Surg 52, 471–476, 1965.PubMedCrossRefGoogle Scholar
  181. 179.
    Ellis H: The cause and prevention of postoperative intraperitoneal adhesions. Surg Gynecol Obstet 133, 497–511, 1971.PubMedGoogle Scholar
  182. 180.
    Whitaker D, Papadimitriou J: Mesothelial healing: morphological and kinetic investigations. J Pathol 145, 159–175.Google Scholar
  183. 181.
    Cameron GR, Hassan SM, De SN: Repair of Glisson’s capsule after tangential wounds of the liver. J Pathol Bacteriol 73, 1–10, 1957.CrossRefGoogle Scholar
  184. 182.
    Johnson FR, Whitting HW: Repair of parietal peritoneum. Brit J Surg 49, 653–660, 1962.PubMedCrossRefGoogle Scholar
  185. 183.
    Eskeland G: Regeneration of parietal peritoneum in rats. A light microscopical study. Acta Path Microbiol Scandina 68, 355–378, 1966.Google Scholar
  186. 184.
    Williams DC: The peritoneum. A plea for a change in attitude towards this membrane. Brit J Surg 42, 401–405, 1955.PubMedCrossRefGoogle Scholar
  187. 185.
    Shaldon S: Peritoneal macrophage: the first line of defense. In: La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C (eds), Peritoneal Dialysis. Milano, p 201, 1986.Google Scholar
  188. 186.
    Raftery AT: Regeneration of parietal and visceral peritoneum. A light microscopical study. Brit J Surgery 60, 293–299, 1973.CrossRefGoogle Scholar
  189. 187.
    Maximow AA, Bloom W: A textbook of histology. WB Saunders Comp. Philadelphia, pp 63–66, 1942.Google Scholar
  190. 188.
    Patnam TJ: The living peritoneum as a dialyzing membrane. Am J Physiol 63, 548–565, 1923.Google Scholar
  191. 189.
    Nagel E: Teleology revisited and other essays on the phylosophy and history of science. Columbia Univ Press. New York, p 75, 197.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • L. Gotloib
  • A. Shostak

There are no affiliations available

Personalised recommendations