The application of molecular biology to the development of new vaccines against poliomyelitis

  • J. W. Almond
Part of the Immunology and Medicine book series (IMME, volume 12)


Over the past decade the poHovirus has become one of the best understood of all viruses which affects humans. The application of increasingly sophisticated molecular biological and immunological techniques to the study of this virus has provided detailed insights into its molecular and genetic structure, its mode of replication and the molecular basis of its pathogenicity (for reviews see refs 1–3). Poliomyelitis, the disease caused by the poliovirus, has been successfully controlled in many countries of the world through the use of two very good vaccines, the inactivated ‘Salk’ vaccine and the live attenuated ‘Sabin’ vaccine. Although both of these vaccines have considerable merits, they also have some relative disadvantages when compared with each other and with other viral vaccines. For example, the killed vaccine is more expensive than the live attenuated, and has seldom found widespread use in developing countries. Its use has also been occasionally linked to problems; for example an outbreak of poliomyelitis in Finland in 1984 suggested that the immunogenicity of at least the type 3 component of the killed vaccine may have been inadequately antigenic4. It has also been suggested that the immune response to the killed vaccine may not provide herd immunity due to the lack of induction of secretory antibodies5. For these reasons, and because of its advantages of lower cost and ease of administration, most countries prefer the live attenuated ‘Sabin’ vaccine.


Vaccine Strain Antigenic Site Oral Polio Vaccine Poliovirus Type Paralytic Poliomyelitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almond, J. W. (1987). The attenuation of poliovirus neurovirulence. Ann. Rev. Microbiol., 41, 153–80CrossRefGoogle Scholar
  2. 2.
    Nomoto, A. and Wimmer, E. (1986). Genetic studies of the antigenicity and the attenuation phenotype of poliovirus. In Russell, W. C. and Almond, J. W. (eds), Molecular Basis of Virus Disease, Vol. 40, pp. 107–34. SGM SymposiumGoogle Scholar
  3. 3.
    Kuhn, R. J. and Wimmer, E. (1987). The replication of picornaviruses. In Rowlands, D. J., Mahy, B. W. J. and Mayo, M. (eds), The Molecular Biology of Positive Strand RNA Viruses, pp. 17–51. (New York: Academic Press)Google Scholar
  4. 4.
    Hovi, T., Huovilainen, A., Kuronent, T., Poyry, T., Salama, N., Cantell, K., Kinnunen, E., Lapinleimu, K., Roivainen, M. and Stenvik, M. (1986). Outbreak of paralytic poliomyelitis in Finland: widespread circulation of antigenically altered poliovirus type 3 in a vaccinated population. Lancet, 1, 1427–42PubMedCrossRefGoogle Scholar
  5. 5.
    Melnick, J. L. (1978). Advantages and disadvantages of killed and live poliomyelitis vaccines. Bull. WHO, 56, 21–38PubMedGoogle Scholar
  6. 6.
    Montefiore, D. Q., Jamieson, M. F., Collard, P. and Jolly, H. (1963). Trial of type 1 oral poliomyelitis vaccine (Sabin) in Nigerian children. Br. Med. J., 1, 1569–72CrossRefGoogle Scholar
  7. 7.
    Assaad, F. and Cockburn, W. C. (1982). The relationship between acute persisting spinal paralysis and poliomyelitis vaccine — results of a ten-year enquiry. Bull. WHO, 60, 231–42Google Scholar
  8. 8.
    Almond, J. W., Stanway, G., Cann, A. J., Westrop, G. D., Evans, D. M. A., Ferguson, M., Minor, P. D., Spitz, M. and Schild, G. C. (1984). New poliovirus vaccines: a molecular approach. Vaccine, 2, 177–84PubMedCrossRefGoogle Scholar
  9. 9.
    Pelletier, J. and Sonnenberg, N. (1988). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 334, 320–5PubMedCrossRefGoogle Scholar
  10. 10.
    Lubinski, J. M., Kaplan, G., Racaniello, V. R. and Dasgupta, A. (1986). Mechanism of in vitro synthesis of covalently linked dimeric RNA molecules by the poliovirus replicase. J. Virol., 58, 459–67PubMedGoogle Scholar
  11. 11.
    Kitamura, N., Semler, B., Rothberg, P. G., Larsen, G. R., Adler, C. J., Dorner, A. J., Emini, E. A., Hanecak, R., Lee, J. J., van der Werf, S., Anderson, C. W. and Wimmer, E. (1981). Primary structure, gene organisation and polypeptide expression of poliovirus RNA. Nature, 291, 547–53PubMedCrossRefGoogle Scholar
  12. 12.
    Hogle, J. M., Chow, M. and Filman, D. J. (1985). The three-dimensional structure of poliovirus at 2.9Å resolution. Science, 229, 1358–65PubMedCrossRefGoogle Scholar
  13. 13.
    Filman, D. J., Syred, R., Chow, M., Minor, P. D., Neadham, A. J. and Hogle, J. M. (1989). Structural factors that control conformational transitions of serotype specificity in type 3 poliovirus. EMBO J. (Submitted)Google Scholar
  14. 14.
    Rossmann, M. G., Arnold, E., Erickson, J. W., Frankenberger, E. A., Griffith, J. P., Hecht, H-J., Johnson, J. E., Kamer, G., Luo, M., Mosser, A. G., Rueckert, R. R., Sherry, B. and Vriend, G. (1985). Structure of a human cold virus and functional relationship to other picornaviruses. Nature, 317, 145–53PubMedCrossRefGoogle Scholar
  15. 15.
    Toyoda, H., Kohara, M., Kataoka, Y., Siganuma, T., Omata, T., Ionura, N. and Nomoto, A. (1984). Complete nucleotide sequences of all three poliovirus serotype genomes. Implications for genetic relationship, gene function and antigenic determinants. J. Mol Biol., 174, 561–85PubMedCrossRefGoogle Scholar
  16. 16.
    Emini, E. A., Jameson, B. A. and Wimmer, E. (1983). Priming for and induction of anti-poliovirus neutralizing antibodies by synthetic peptides. Nature, 304, 699–703PubMedCrossRefGoogle Scholar
  17. 17.
    Van der Werf, S., Wynchowski, G., Bruneau, P., Blondel, B., Crainic, R., Horodniceanu, F. and Girard, M. (1983). Localization of a poliovirus type 1 neutralization epitope in viral capsid polypeptide VP1. Proc. Natl. Acad. Sci. USA, 80, 5080–4PubMedCrossRefGoogle Scholar
  18. 18.
    Minor, P. D., Ferguson, M., Evans, D. M. A., Almond, J. W. and Icenogle, J. P. (1986). Antigenic structure of polioviruses of serotypes 1, 2 and 3. J. Gen. Virol., 67, 1283–91PubMedCrossRefGoogle Scholar
  19. 19.
    Icenogle, J. P., Minor, P. D., Ferguson, M. and Hogle, J. M. (1986). Modulation of humoral response to a 12-amino-acid site on the poliovirus virion. J. Virol., 60, 297–301PubMedGoogle Scholar
  20. 20.
    Sabin, A. B. and Boulger, L. R. (1973). History of Sabin attenuated poliovirus oral live vaccine strains. J. Biol Stand., 1, 115–18CrossRefGoogle Scholar
  21. 21.
    Cann, A. J., Stanway, G., Hughes, P. J., Minor, P. D., Evans, D. M. A., Schild, G. G and Almond, J. W. (1984). Reversion to neuro virulence of the live-attenuated Sabin type 3 oral poliovirus vaccine. Nucl Acids Res., 12, 7787–92PubMedCrossRefGoogle Scholar
  22. 22.
    Westrop, G. D., Wareham, K. A., Evans, D. M. A., Dunn, G., Minor, P. D., Magrath, D. I., Taffs, F., Marsden, S., Skinner, M. A., Schild, G. G and Almond, J. W. (1989). Genetic basis of attenuation of the Sabin type 3 oral polio vaccine. J. Virol. (In press)Google Scholar
  23. 23.
    Evans, D. M. A., Dunn, G., Minor, P. D., Schild, G. G., Cann, A. J., Stanway, G., Almond, J. W., Currey, K. and Maizel, J. V. Jr. (1985). Increased neuro virulence associated with a single nucelotide change in a non-coding region of the Sabin type 3 poliovaccine genome. Nature, 314, 548–50PubMedCrossRefGoogle Scholar
  24. 24.
    Almond, J. W., Westrop, G. D., Cann, A. J., Stanway, G., Evans, D. M. A., Minor, P. D. and Schild, G. G (1985). Attenuation and reversion to neuro virulence of the Sabin poliovirus type 3 vaccine. In Lerner, R. A., Chanock, R. M. and Brown, F. (eds), Vaccines 85, pp. 271–83. (Cold Spring Harbor Laboratory)Google Scholar
  25. 25.
    La Monica, N., Almond, J. W. and Racaniello, V. R. (1987). A mouse model for poliovirus neuro virulence identifies mutations that attenuate the virus for man. J. Virol., 61, 2917–20PubMedGoogle Scholar
  26. 26.
    Omata, T., Kohara, M., Kuge, S., Komatsu, T., Abe, S., Semler, B. L., Kameda, A., Itoh, H., Arita, M., Wimmer, E. and Nomoto, A. (1986). Genetic analysis of the attenuation phenotype of poliovirus type 1. J. Virol, 58, 348–58PubMedGoogle Scholar
  27. 27.
    Nomoto, A., Omata, T., Toyoda, H., Kuge, S., Horie, H., Kataoka, Y., Genba, Y., Nakano, Y. and Imura, N. (1982). Complete nucleotide sequence of the attenuated poliovirus Sabin 1 strain genome. Proc. Natl Acad. Sci. USA, 79, 5793–7PubMedCrossRefGoogle Scholar
  28. 28.
    Nomoto, A., Kohara, M., Kuge, S., Abe, S., Semler, B. L., Komatsu, T., Arita, M. and Itoh, H. (1988). The development of new poliovirus vaccines based on molecular cloning. In Kurstak, E., Marusyk, R. G., Murphy, F. A. and Van Regenmortel, M. H. V. (eds), Applied Virology Research, Vol. I: New Vaccines and Chemotherapy, pp. 43–62. (New York, London: Plenum)Google Scholar
  29. 29.
    Minor, P. D. and Dunn, G. (1988). The effect of sequences in the 5′ non-coding region on the replication of polioviruses in the human gut. J. Gen. Virol., 69, 1091–6PubMedCrossRefGoogle Scholar
  30. 30.
    Skinner, M. A., Racaniello, V. R., Dunn, G., Cooper, J., Minor, P. D. and Almond, J. W. (1989). A new model for the secondary structure of the 5′ non-coding RNA of poliovirus is supported by biochemical and genetical data which also show that RNA secondary structure is important in neurovirulence. J. Mol Biol. (In press)Google Scholar
  31. 31.
    Burke, K. L., Dunn, G., Ferguson, M., Minor, P. D. and Almond, J. W. (1988). Antigen chimaeras of poliovirus as potential new vaccines. Nature, 332, 81–2PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • J. W. Almond

There are no affiliations available

Personalised recommendations