Esprit ’89 pp 180-194 | Cite as

Software for Modelling Semiconductor Devices in Three Dimensions

  • C. Greenough
  • D. Gunasekera
  • P. A. Mawby
  • M. S. Towers
  • C. J. Fitzsimons
Conference paper


In recent years three-dimensional modelling of semiconductor devices has become increasingly important due to the continued miniaturisation of devices. There has been a corresponding increase in the research devoted to developing three-dimensional numerical models of devices. Here we discuss some of the work in the ESPRIT project EVEREST relating to this. We describe in detail the software implementation of the algorithmic techniques being developed in the project.


Semiconductor Device Mobility Model Impurity Profile Rutherford Appleton Laboratory MOSFET Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D.L. Scharfetter and H.K. Gummel “ arge signal analysis of a Silicon Read diode oscillator”, IEEE Trans. Elect. Dev., ED-16, 64–77 (1969).CrossRefGoogle Scholar
  2. [2]
    J.O. Beck and R. Conradt,“Auger recombination in silicon”, Solid State Comm. vol. 13 93–95 (1973).CrossRefGoogle Scholar
  3. [3]
    C. den Heijer,“Preconditioned iterative methods for nonsymmetric linear systems”, Proc.Int.Conf. Simulation of Semiconductor Devices and Processes, Pineridge Press, Swansea, 276–285 (1984).Google Scholar
  4. [4]
    H.P.D. Lanyon and R.A. Tuft, “Bandgap narrowing in heavily doped silicon”, Proc IEDM, pp 316–319 (1978).Google Scholar
  5. [5]
    J.A. Meijerink and H.A. Van der Vorst, “Guidlines for the usage of incomplete decompositions in solving sets of linear equations as they occur in practical problems”,J. Comp. Phys.,44 134–155 (1981).CrossRefzbMATHGoogle Scholar
  6. [6]
    S.J. Polak, C. Den Heijer, W.H.A. Schilders and P. Markowich, “Semiconductor device modelling from the numerical point of view”, Int. J. Num. Meth. Eng. 24, 763–838 (1987).CrossRefzbMATHGoogle Scholar
  7. [7]
    S. Selberherr, “Analysis and simulation of semiconductor devices” Springer-Verlag, Wien-New York (1984).Google Scholar
  8. [8]
    W. Shockley and W.T. Read Jr. “Statistics of the recombination of holes and electrons” Phys. Rev. 87, No.5, 835–842 (1952).CrossRefzbMATHGoogle Scholar
  9. [9]
    J.W. Slotboom and H.C.De Graaf,“Bandgap narrowing in silicon bipolar transistors”, IEEE Trans. Elect. Dev. 24, 1123–1125 (1977).CrossRefGoogle Scholar
  10. [10]
    G. Voronoi, “Nouvelles applications des parametres continus a la theorie des formes quadratiques”, J. Reine Angew. Math. 134, No.4, 198–287 (1908).CrossRefzbMATHGoogle Scholar
  11. [11]
    O.E. Akcasu, “Convergence of Newton’s method for the solution of the semiconductor transport equations and hybrid solution techniques for multidimensional simulation of VLSI devices”, Solid State Elect. (GB) 27, No. 4, 319–328 (1984).CrossRefGoogle Scholar
  12. [12]
    G.L. Dirichlet, “Uber die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen”, J. Reine Angew. Math. 40, No. 3, 209–227 (1850).CrossRefzbMATHGoogle Scholar
  13. [13]
    S.P. Edwards, A.M. Howland and P.J. Mole, “Initial guess strategy and linear algebra techniques for a coupled two dimensional equation solver”, NASECODE IV Proc, Dublin, Boole Press, 1985.Google Scholar
  14. [14]
    W.L. Engl, H.K. Dirks and B Meinzerhagen, “Device modeling”,Proc. IEEE 71, No. 1, 10–33 (1983).CrossRefGoogle Scholar
  15. [15]
    J.G. Fossum and D.S. Lee,“A Physical model for the dependence of carrier lifetime on doping density in nondegenerate silicon”, Solid State Electron, Vol.25, No.8, 741–747 (1982).CrossRefGoogle Scholar
  16. [16]
    B.J. McCartin, “Discretisation of the semiconductor device equations”, from New Problems and New Solution for Device and Process Modelling (ed. J.J.H. Miller) Boole Press, Dublin (1985)Google Scholar
  17. [17]
    P.J. Mole, R. Debney and R. Van De Poel, “First issue release documentation for the linear solver, sparsity generation, Jacobian filling and machine constant routines”, EC Microelectronic Project MR-02-RAL, Report GEC 5.3 (June 1987).Google Scholar

Copyright information

© ECSC, EEC, EAEC, Brussels and Luxembourg 1989

Authors and Affiliations

  • C. Greenough
    • 1
  • D. Gunasekera
    • 2
  • P. A. Mawby
    • 2
  • M. S. Towers
    • 2
  • C. J. Fitzsimons
    • 3
  1. 1.Rutherford Appleton LaboratoryChilton, DidcotUK
  2. 2.University College, SwanseaSwanseaUK
  3. 3.Numerical Analysis GroupTrinity College DublinDublin 2Ireland

Personalised recommendations