Advertisement

Esprit ’89 pp 126-137 | Cite as

Reconfiguration in a Microprocessor: Practical Results

  • R. Leveugle
  • M. Soueidan
  • G. Saucier
  • J. Trilhe
  • N. Wehn
  • M. Glesner
Conference paper

Abstract.

This paper investigates microprocessor design technique using redundancy in order to increase the yield by means of end-ofmanufacturing defect tolerance. A lot of effort was done to obtain a regular design allowing the introduction of standby elements at an adequate level. The HYETI microprocessor chip is being manufactured within the ESPRIT 824 project (task C) and this paper reports on the practical results on silicon. In the HYETI chip, the area of the redundant elements was limited to less than 25% and a good compromise between area overhead and yield enhancement was achieved.

Keywords

Defect Tolerance Product Term Test Input Area Overhead Linear Feedback Shift Register 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Aart 86]
    E. H. L. Aarts, F. P. M. Beenker, M. M. Ligthart, ‘Design for testability of PLAs using statistical cooling’, 23th Design Automation Conference, 1986Google Scholar
  2. [Bozo 84]
    S. Bozorgui-Nesbat, E. J. McCluskey, ‘Lower overhead design for testability ofPLAs’, International Test Conference, 1984Google Scholar
  3. [Bozo 85]
    S. Bozorgui-Nesbat, J. Khakbaz, ‘Minimizing extra hardware for fully testable PLA design’, International Conference on Computer-Aided Design, 1985Google Scholar
  4. [Gene 86]
    P. Genestier, C. Jay, G. Saucier, ‘A reconfigurable microprocessor for Wafer Scale Integration’, in: “Wafer Scale Integration”, G. Saucier and J. Trilhe, ed., Elsevier Science Publishers, Amsterdam, 1986Google Scholar
  5. [Kuo 87]
    S.-Y. Kuo, W. K. Fuchs, ‘Fault diagnosis and spare allocation for yield enhancement in large reconfigurable PLAs’, International Test Conference, 1987Google Scholar
  6. [Leve 88]
    R. Leveugle, M. Soueidan, ‘Design of an application specific microprocessor’, International Workshop on Logic and Architecture Synthesis for Silicon Compilers, Grenoble, France, May 1988Google Scholar
  7. [Salu 83]
    K. K. Saluja, K. Kinoshita, H. Fujiwara, ‘An easily testable design ofPLAs for multiple faults’, IEEE trans. on Computers, vol. C-32, no. 11, November 1983CrossRefGoogle Scholar
  8. [Sauc 87]
    G. Saucier, M. Crastes de Paulet, P. Sicard, ‘ASYL: a rulebased system for controller synthesis’, IEEE trans. on Computer-Aided Design, vol. CAD-6, no. 6, Novembre 1987CrossRefGoogle Scholar
  9. [Some 86]
    F. Somenzi, S. Gai, ‘Fault detection in Programmable Arrays’, Proc. of the IEEE, voL 74, no. 5, May 1986CrossRefGoogle Scholar
  10. [Surne 86] G. W. Sumerling, G. E. Dixon, A. K. J. Stewart, ‘An assessment of non-regular cell based architecture for ULSI and WSI’, in: “Wafer Scale Integration”, G. Saucier and J. Trilhe, ed., Elsevier Science Publishers, Amsterdam, 1986Google Scholar
  11. [Teep 87]
    G. H. Teepe, W. L. Engl, ‘A bipolar correlator with redundancy’, IEEE Journal of Solid-State Circuits, vol. SC-22, no. 6, December 1987CrossRefGoogle Scholar
  12. [Wehn 88]
    N. Wehn, M. Glesner, K. Caesar, P. Mann, A. Roth, ‘A defecttolerant and fully testable PLA’, 25th Design Automation Conference, 1988Google Scholar
  13. [Wey 87]
    C.-L. Wey, ‘On the design of a redundant Programmable Logic Array’, IEEE Journal of Solid-state Circuits, vol. SC-22, no.1, 1987CrossRefGoogle Scholar
  14. [Wey 88]
    C.-L. Wey, ‘On yield consideration for the design of redundant Programmable Logic Arrays’, IEEE trans. on Computer-Aided Design, vol. 7, no. 4, 1988MathSciNetCrossRefGoogle Scholar

Copyright information

© ECSC, EEC, EAEC, Brussels and Luxembourg 1989

Authors and Affiliations

  • R. Leveugle
    • 1
  • M. Soueidan
    • 1
  • G. Saucier
    • 1
  • J. Trilhe
    • 2
  • N. Wehn
    • 3
  • M. Glesner
    • 3
  1. 1.Institut National Polytechnique de Grenoble/CSIGrenoble CedexFrance
  2. 2.SGS-Thomson MicroelectronicsGrenobleFrance
  3. 3.Technische Hochschule DamstadtDarmstadtGermany

Personalised recommendations