Advertisement

Empirical Photospheric Fluxtube Models From Inversion of Stokes V Data

  • C. U. Keller
Conference paper
Part of the International Astronomical Union book series (IAUS, volume 138)

Abstract

We present results of an inversion procedure that derives the turbulent velocity, the magnetic field strength, and the temperature stratification of the photospheric layers of solar magnetic fluxtubes from 10 FeI and FeII Stokes V line profiles around 5250 Å and from the continuum contrast. The free parameters of two-dimensional magnetohydrostatic fluxtube models are determined by minimizing the difference between observed and calculated Stokes V parameters in an iterative manner. Results of this inversion procedure applied to observations of a plage and a network region at disk center indicate a temperature deficit (at equal geometrical height) of the fluxtubes at the level of continuum formation and a temperature excess at the highest levels of line formation in general agreement with the latest theoretical fluxtube models.

Keywords

Magnetic Field Strength Optical Depth Temperature Stratification Inversion Procedure Temperature Deficit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deinzer, W., Hensler, G., Schiissler, M., Weisshaar, E.: 1984, Astron. Astrophys. 139, 435.ADSGoogle Scholar
  2. Grossmann-Doerth, U., Knolker, M., Schiissler, M., Weisshaar, E.: 1988a, in Solar and Stellar Granulation, NATO Advanced Research Workshop, R.J.Rutten, G.Severino (Eds.), in press.Google Scholar
  3. Grossmann-Doerth, U., Schiissler, M., Solanki, S.K.: 1988b, Astron. Astrophys. 206, L37.ADSGoogle Scholar
  4. Kalkofen, W., Bodo, G., Massaglia, S., Rossi, P.: 1988, in Solar and Stellar Granulation, NATO Advanced Research Workshop, R.J.Rutten, G.Severino (Eds.), in press.Google Scholar
  5. Keller, C.U., Solanki, S.K., Steiner, 0, Stenflo, J.O.: 1989, in preparation. Google Scholar
  6. Koutchmy, S.: 1977, Astron. Astrophys. 61, 397.ADSGoogle Scholar
  7. Marquardt, D.W.: 1963, J. Soc. Ind. Appl. Math. 11, 431.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Solanki, S.K.: 1986, Astron. Astrophys. 168, 311.ADSGoogle Scholar
  9. Solanki, S.K., Keller, C., Stenflo, J.O.: 1987, Astron. Astrophys. 188, 183.ADSGoogle Scholar
  10. Steiner, 0, Pneumann, G.W., Stenflo, J.O.: 1986, Astron. Astrophys. 170, 126.ADSzbMATHGoogle Scholar
  11. Stenflo, J.O.: 1973, Solar Phys. 32, 41.ADSCrossRefGoogle Scholar
  12. Stenflo, J.O.: 1975, Solar Phys. 42, 79.ADSCrossRefGoogle Scholar
  13. Stenflo, J.O., Harvey, J.W., Brault, J.W., Solanki, S.K.: 1984, Astron. Astrophys. 131, 33.Google Scholar
  14. Stenflo, J.O., Solanki, S.K., Harvey, J.W.: 1987, Astron. Astrophys. 171, 305.ADSGoogle Scholar

Copyright information

© International Astronomical Union 1990

Authors and Affiliations

  • C. U. Keller
    • 1
  1. 1.Institute of AstronomyETH-ZentrumZürichSwitzerland

Personalised recommendations