Structures and Energetics of Ion-Solvent Microclusters (n = 1,..,8); Cl, Br and I with H2O, CH3OH, CH3CN and (CH3)2CO

  • B. Guillot
  • Y. Guissani
  • D. Borgis
  • S. Bratos
Part of the NATO ASI Series book series (ASIC, volume 291)

Abstract

The gas phase clustering reactions of chloride, bromide and iodide ion with water, methanol, acetonitrile and acetone molecules (n = 1,..,8) are investigated by Monte Carlo simulation. Using semi-empirical potential functions which include polarization effects, we obtain good agreement with experimental gas phase ion solvation enthalpies. Moreover, the coordination number, the geometry of the first shell and their relation with ionic radius are discussed in detail.

Keywords

Coordination Number Solvent Molecule Radial Distribution Function Ionic Cluster Solvation Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Kebarle, Ann. Rev. Phys. Chem, 1977, 28, 445CrossRefGoogle Scholar
  2. [2]
    A.W. Castleman Jr., R.G. Keesee, Chem. Rev., 1986, 86, 589CrossRefGoogle Scholar
  3. [3]
    A. Karpfen, P. Schuster, in The Chemical Physics of Solvation, Part A: Theory of Solvation, eds. R.R. Dogonadze, E. Kalman, A.A. Kornyshev, J. Ulstrup (Elsevier, Amsterdam), 1985, p.298 and references thereinGoogle Scholar
  4. [4]
    M. Arshadi, R. Yamdagni, P. Kebarle, J. Phys. Chem., 1970, 74, 1475CrossRefGoogle Scholar
  5. [5]
    R. Yamdagni, P. Kebarle, J. Am. Chem. Soc., 1971, 93, 7139; ibid, 1972, 94, 2940Google Scholar
  6. [6]
    R. Yamdagni, J.D. Payzant, P. Kebarle, Can. J. Chem., 1973, 51, 2507Google Scholar
  7. [7]
    G. Caldwell, P. Kebarle, J. Ann. Chem. Soc., 1984, 106, 967CrossRefGoogle Scholar
  8. [8]
    R.G. Keesee, A.W. Castleman Jr., Chem. Phys. Lett., 1980, 74, 139CrossRefGoogle Scholar
  9. [9]
    M.A. French, S. Ikuta, P. Kebarle, Can. J. Chem., 1982, 60, 1907CrossRefGoogle Scholar
  10. [10]
    T.F. Magnera, G. Caldwell, J. Sunner, S. Ikuta, P. Kebarle, J. Am. Chem. Soc., 1984, 106, 6140CrossRefGoogle Scholar
  11. [11]
    K. Hiraoka, K. Morise, T. Shoda, Int. J. Mass. Spectr. and Ion Process, 1985, 67, 11; ibid, 1986, 68, 99Google Scholar
  12. [12]
    K. Hiraoka, H. Takimoto, K. Morise, T. Shoda, S. Nakamura, Bull. Chem. Soc. Japan, 1986, 59, 2247Google Scholar
  13. [13]
    K. Hiraoka, S. Mizuse, Chem. Phys., 1987, 118, 457CrossRefGoogle Scholar
  14. [14]
    C.E. Klots, J. Phys. Chem., 1981, 85, 3585CrossRefGoogle Scholar
  15. [15]
    H. Kistenmacher, H. Popkie, E. Clementi, J. Chem. Phys., 1973, 59, 5842; ibid, 1974, 61, 799Google Scholar
  16. [16]
    C.L. Briant, J.J. Burton, J. Chem. Phys., 1974, 60, 2849; 1976, 64, 2888CrossRefGoogle Scholar
  17. [17]
    M.R. Mruzik, F.F. Abraham, D.E. Schreiber, J. Chem. Phys. 1976, 64, 481CrossRefGoogle Scholar
  18. [18]
    J. Chandrasekhar, D.C. Spellmeyer, W.L. Jorgensen, J. Am. Chem. Soc., 1984, 106, 903CrossRefGoogle Scholar
  19. [19]
    R.W. Impey, P.A. Madden, I.R. Mc Donald, J. Phys. Chem., 1983, 87, 5071CrossRefGoogle Scholar
  20. [20]
    K. Heinzinger, Physica, 1985, 131B, 196Google Scholar
  21. [21]
    T.P. Lybrand, P.A. Kollman, J. Chem. Phys., 1985, 83, 2923Google Scholar
  22. [22]
    P. Cieplak, T.P. Lybrand, P.A. Kollman, J. Chem. Phys., 1987, 86, 6398CrossRefGoogle Scholar
  23. [23]
    S.S. Sung and P.C. Jordan, J. Chem. Phys., 1986, 85, 4045CrossRefGoogle Scholar
  24. [24]
    S. Lin and P.C. Jordan, J. chem. Phys., 1988, 89, 7492CrossRefGoogle Scholar
  25. [25]
    W.F. Van Gunsteren, Gromos Reference Mannual, Biomos B.V. (Nijenborgh 16, Groningen, the Netherlands, 1987 )Google Scholar
  26. [26]
    S. Yamabe, K. Hirao, Chem. Phys. Lett., 1981, 84, 598CrossRefGoogle Scholar
  27. [27]
    S. Yamabe, N. Ihira, Chem. Phys. Lett., 1982, 92, 172CrossRefGoogle Scholar
  28. [28]
    S. Yamabe, Y. Furumiya, K. Hiraoka, K. Morise, Chem. Phys. Lett., 1986, 131, 261CrossRefGoogle Scholar
  29. [29]
    H.J.C. Berendsen, J.P. M.Postma, W.G. Von Gunsteren, J. Hermans, in “Intermolecular Forces”, B. Pullman Editor, Reidel, Dordrecht, 1981, p. 331Google Scholar
  30. [30]
    M. Haughney, M. Ferrario, I.R. Mc Donald, Mol. Phys., 1986, 58, 849CrossRefGoogle Scholar
  31. [31]
    D.M.F. Edwards, P.A. Madden, I.R. Mc Donald, Mol. Phys., 1984, 51, 1141 We have slightly modified the Lennard-Jones parameters G(CH3) and E(CH3) (see table I)Google Scholar
  32. [32]
    G.J. Evans, M.W. Evans, J. Chem. Soc. Faraday Trans. II, 1983, 79, 153 In order to obtain a better agreement with the thermodynamic properties of the liquid, we have modified the parameters of this potential.Google Scholar
  33. [33]
    Y. Guissani, B. Guillot, S. Bratos, J. Chem. Phys., 1988, 88, 5850CrossRefGoogle Scholar
  34. [34]
    Monte Carlo Methods in Statistical Physics, K. Binder Ed., Springer Verlag, Berlin, 1979Google Scholar
  35. [35]
    W. Chapman, N. Quirke, Physica, 1985, 131B, 34Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • B. Guillot
    • 1
  • Y. Guissani
    • 1
  • D. Borgis
    • 1
  • S. Bratos
    • 1
  1. 1.Laboratoire de Physique Théorique des LiquidesUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations