Skip to main content

Formation and Evolution of the Solar Nebula

  • Chapter
Theory of Accretion Disks

Part of the book series: NATO ASI Series ((ASIC,volume 290))

Abstract

The protostellar phase of stellar evolution is of considerable importance in determining whether a solar nebula forms from the collapse of an interstellar cloud, what the physical properties of the nebula are at the onset of its evolution, what the dominant mechanisms for angular momentum transport will be during the subsequent evolution, and whether conditions are favorable for the formation of planets. The initial mass distribution and angular momentum distribution in the core of a molecular cloud determine whether a binary system or a single star is formed. A relatively slowly rotating and centrally condensed cloud is likely to collapse to a disk-like structure out of which planets can form. The above parameters then determine the temperature and density structure of the disk and the characteristics of the resulting planetary system.

There has been considerable recent interest in two- and three-dimensional numerical hydrodynamical calculations with radiative transfer, applied to the inner regions of collapsing, rotating protostellar clouds of about 1 M. The calculations start at a density that is high enough so that the gas is decoupled from the magnetic field. Three-dimensional calculations show amplification of initial non-axisymmetric perturbations during collapse. If such perturbations are relatively small, angular momentum transport by gravitational torques is slow enough so that an axisymmetric approximation is sufficiently accurate to give useful results. Under the further assumption that angular momentum transport by turbulent viscosity is not important on a collapse time, calculations can be performed under the assumption of conservation of angular momentum of each mass element. Once the disk forms, however, transport processes must be included. This paper concentrates on the formation phase and its influence on the later evolutionary phases.

With a suitable choice of initial angular momentum, the size of the disk is similar to that of our planetary system. The disk forms as a relatively thick, warm equilibrium structure, with a shock wave separating it from the surrounding infalling gas. The calculations give temperature and density distributions throughout the infalling cloud as a function of time. From these, frequency-dependent radiative transfer calculations produce infrared spectra and isophote maps at selected viewing angles. The theoretical spectra may be compared with observations of suspected protostellar sources, under the hypothesis that the observed objects actually represent precursors to “solar” nebulae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abt, H. A. 1983. Ann. Rev. Astron. Astrophys., 21, 343

    Article  ADS  Google Scholar 

  • Adams, F. C., Lada, C. J., and Shu, F. H. 1987. Astrophys. J., 312, 788

    Article  ADS  Google Scholar 

  • Adams, F. C., and Shu, F.H. 1986. Astrophys. J., 308, 836

    Article  ADS  Google Scholar 

  • Bertout, C., and Yorke, H. W. 1978. In Protostars and Planets, ed. T. Gehrels (Tucson: University of Arizona Press), p. 648

    Google Scholar 

  • Bodenheimer, P., Różyczka, M., Yorke, H. W., and Tohline, J. E. 1988. In Formation and Evolution of Low Mass Stars, eds. A. K. Dupree and M. T. V. T. Lago (Dordrecht: Kluwer), p. 139

    Google Scholar 

  • Bodenheimer, P., Yorke, H. W., Różyczka, M., and Tohline, J. E. 1989. In preparation

    Google Scholar 

  • Boss, A. P. 1985. Icarus, 61, 3

    Article  ADS  Google Scholar 

  • Boss, A. P. 1987. Astrophys. J., 319,149

    Article  ADS  Google Scholar 

  • Boss, A. P. 1989. Astrophys. J., submitted

    Google Scholar 

  • Cabot, W., Canuto, V.M., Hubickyj, O., and Pollack, J. B. 1987a. Icarus, 69, 387

    Article  ADS  Google Scholar 

  • Cabot, W., Canuto, V.M., Hubickyj, O., and Pollack, J. B. 1987b. Icarus, 69, 423

    Article  ADS  Google Scholar 

  • Cameron, A. G. W. 1962. Icarus, 1, 13

    Article  ADS  Google Scholar 

  • Cameron, A. G. W. 1963. Icarus, 1, 339

    Article  ADS  Google Scholar 

  • Cameron, A. G. W. 1978. Moon and Planets, 18, 5

    Article  ADS  Google Scholar 

  • Cassen, P., and Summers, A. 1983. Icarus, 53, 26

    Article  ADS  Google Scholar 

  • Durisen, R. H., Gingold, R. A., Tohline, J. E., and Boss, A. P. 1986. Astrophys. J., 305, 281

    Article  ADS  Google Scholar 

  • Durisen, R. H., and Tohline, J. E. 1985. In Protostars and Planets II, eds. D. C. Black and M. S. Matthews (Tucson: University of Arizona Press), p. 534

    Google Scholar 

  • Goldsmith, P. F., and Arquilla, R. 1985. In Protostars and Planets II, eds. D. C. Black and M. S. Matthews (Tucson: University of Arizona Press), p. 137

    Google Scholar 

  • Hartmann, L., Hewitt, R., Stahler, S., and Mathieu, R. D. 1986. Astrophys. J., 309, 275

    Article  ADS  Google Scholar 

  • Hartmann, L., and Kenyon, S. 1988. In Formation and Evolution of Low Mass Stars, eds. A. K. Dupree and M. T. V. T. Lago (Dordrecht: Kluwer), p. 163

    Google Scholar 

  • Hayashi, C. 1981. Prog. Theor. Phys. Suppl, 70, 35

    Article  ADS  Google Scholar 

  • Heyer, M. H. 1988. Astrophys. J., 324, 311

    Article  ADS  Google Scholar 

  • Larson, R. B. 1983. Rev. Mexicana Astron. Astrof, 7, 219

    ADS  Google Scholar 

  • Larson, R. B. 1989. In The Formation and Evolution of Planetary Systems, eds. H. A. Weaver, F. Paresce, and L. Danly (Cambridge University Press), in press

    Google Scholar 

  • Levy, E. H., and Araki, S. 1989. Icarus, in press

    Google Scholar 

  • Lewis, J. S. 1974. Science, 186, 440

    Article  ADS  Google Scholar 

  • Lin, D. N. C., and Papaloizou, J. 1980. Mon. Not. R. astr. Soc., 191, 37

    ADS  Google Scholar 

  • Lin, D. N. C., and Pringle, J. E. 1987. Mon. Not. R. astr. Soc., 225, 607

    ADS  Google Scholar 

  • Miyama, S. 1989. In The Formation and Evolution of Planetary Systems, eds. H. A. Weaver, F. Paresce, and L. Danly (Cambridge University Press), in press

    Google Scholar 

  • Morfill, G. E., Tscharnuter, W., and Völk, H. J. 1985. In Protostars and Planets II, eds. D. C. Black and M. S. Matthews (Tucson: University of Arizona Press), p. 493

    Google Scholar 

  • Myers, P. C. 1987. In Star Forming Regions (IAU Symposium 115), eds. M. Peimbert and J. Jugaku (Dordrecht: Reidel), p. 33

    Google Scholar 

  • Myers, P. C., Fuller, G. A., Mathieu, R. D., Beichman, C. A., Benson, P. J., Schild, R. E., and Emerson, J. P. 1987. Astrophys. J., 319, 340

    Article  ADS  Google Scholar 

  • Nakano, T. 1984. Fund. Cosmic Phys., 9, 139

    ADS  Google Scholar 

  • Pollack, J. B., McKay, C., and Christofferson, B. 1985. Icarus, 64, 471

    Article  ADS  Google Scholar 

  • Pringle, J. E. 1989. Mon. Not. R. astr. Soc., in press

    Google Scholar 

  • Regev, O., and Shaviv, G. 1981. Astrophys. J., 245, 934

    Article  ADS  Google Scholar 

  • Ruden, S. P., and Lin, D. N. C. 1986. Astrophys. J., 308, 883

    Article  ADS  Google Scholar 

  • Ruzmaikina, T. V. 1981. Adv. Space Res., 1, 49

    Article  ADS  Google Scholar 

  • Ruzmaikina, T. V. and Maeva, S. V. 1986. Astron. Vestn., 20, No. 3, 212

    ADS  Google Scholar 

  • Safronov, V. S., and Ruzmaikina, T. V. 1985. In Protostars and Planets II, eds. D. C. Black and M. S. Matthews (Tucson: University of Arizona Press), p. 959

    Google Scholar 

  • Sargent, A. I., and Beckwith, S. 1987. Astrophys. J., 323, 294

    Article  ADS  Google Scholar 

  • Shu, F. H., Adams, F. C., and Lizano, S. 1987. Ann. Rev. Astron. Astrophys., 25, 23

    Article  ADS  Google Scholar 

  • Shu, F. H., Lizano, S., Adams, F. C., and Ruden, S. P. 1988. In Formation and Evolution of Low Mass Stars, eds. A. K. Dupree and M. T. V. T. Lago (Dordrecht: Kluwer), p. 123

    Google Scholar 

  • Stahler, S. W., Shu, F. H., and Taam, R. E. 1980. Astrophys. J., 241, 637

    Article  ADS  Google Scholar 

  • Strom, S. E., Edwards, S., and Strom, K. M. 1989. In The Formation and Evolution of Planetary Systems, eds. H. A. Weaver, F. Paresce, and L. Danly (Cambridge University Press), in press

    Google Scholar 

  • Terebey, S., Shu, F. H., and Cassen, P. 1984. Astrophys. J., 286, 529

    Article  ADS  Google Scholar 

  • Toomre, A. 1964. Astrophys. J., 139, 1217

    Article  ADS  Google Scholar 

  • Tscharnuter, W. 1981. In Fundamental Problems in the Theory of Stellar Evolution (IAU Symposium 93), eds. D. Sugimoto, D. Q. Lamb, and D. N. Schramm (Dordrecht: Reidel), p. 105

    Google Scholar 

  • Tscharnuter, W. 1987. Astron. Astrophys., 188, 55

    ADS  Google Scholar 

  • Yuan, C., and Cassen, P. 1985. Icarus, 64, 435

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bodenheimer, P. (1989). Formation and Evolution of the Solar Nebula. In: Meyer, F., Duschl, W.J., Frank, J., Meyer-Hofmeister, E. (eds) Theory of Accretion Disks. NATO ASI Series, vol 290. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1037-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1037-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6958-8

  • Online ISBN: 978-94-009-1037-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics