Dusty Disks and the Infrared Emission from AGN

  • E. Sterl Phinney
Part of the NATO ASI Series book series (ASIC, volume 290)

Abstract

The distortions inferred in the gaseous disks of active galaxies suggest that a significant, and possibly dominant fraction of the 1 - 1000μm radiation observed from AGN must be thermal emission from gas and dust heated by the central source. We report calculations of the growth and sublimation of dust grains in the outer parts of accretion disks appropriate to AGN. The thermal state of the gas undergoes a sudden change at the radius where the dust sublimates. The outer portion of the accretion disk radiates at 0.5 – 5 μm; free-free emission from gas whose dust has sublimated contributes to the flux at 0.5 – 2μm. If this thermal emission dominates the flux from radio-quiet quasars, it naturally explains the frequency and depth of the universal minimum in νF ν at 1014.5 Hz. Free-free emission from the photoionized surface layers of the disk at larger radii produces a radio flux at ν 1011 HZ comparable to that observed in radio-quiet quasars. The far-infrared and submillimeter emission from radio-quiet quasars and Seyfert galaxies is more naturally interpreted as reradiation by dust, than as nonthermal emission from the inner accretion disk.

Keywords

Accretion Disk Column Density Covering Factor Infrared Emission Central Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, T.F. 1977 Ap. J. Suppl., 33, 19.ADSCrossRefGoogle Scholar
  2. Alexander, D.R., Johnson, H.R., and Rypma, R.L. 1983, Ap. J., 272, 773.ADSCrossRefGoogle Scholar
  3. Antonucci, R.R.J., and Miller, J.S. 1985 Ap. J., 297, 621.ADSCrossRefGoogle Scholar
  4. Antonucci, R.R.J., and Barvainis, R. 1988 Ap. J., 332, L13.ADSCrossRefGoogle Scholar
  5. Barthel, P. 1989 Ap. J., 336, 606.ADSCrossRefGoogle Scholar
  6. Barvainis, R. 1987 Ap. J., 320, 537.ADSCrossRefGoogle Scholar
  7. Begelman, M.C., McKee, C.F., and Shields, G.A. 1983 Ap. J., 271, 70.ADSCrossRefGoogle Scholar
  8. Begelman, M.C. 1985 Ap. J., 297, 492.ADSCrossRefGoogle Scholar
  9. Bollea, D. and Cavaliere, A. 1976 Astr. Ap., 49, 313.ADSGoogle Scholar
  10. Clavel, J., Wamsteker, W., and Glass, I.S. 1989 Ap. J., 337, 236.ADSCrossRefGoogle Scholar
  11. Collin-Souffrin, S. 1987 Astr. Ap., 179, 60.ADSGoogle Scholar
  12. Davidson, K. and Netzer, H. 1979 Rev. Mod. Phys., 51, 715.ADSCrossRefGoogle Scholar
  13. de Kool, M. & Begelman, M.C. 1989 Nature, 338, 484.ADSCrossRefGoogle Scholar
  14. Draine, B.T. 1981 Ap. J., 245, 880.ADSCrossRefGoogle Scholar
  15. Draine, B.T., and Lee, H.M. 1984 Ap. J., 285, 89.ADSCrossRefGoogle Scholar
  16. Edelson, R.A., and Malkan, M.A. 1986 Ap. J., 308, 59.ADSCrossRefGoogle Scholar
  17. Gunn, J.E. 1979 in Active Galactic Nuclei, eds. C. Hazard and S. Mitton, (Cambridge: Cambridge U. Pr.), 213.Google Scholar
  18. Haniff, C.A., Wilson, A.S., and Ward, M.J. 1988 Preprint.Google Scholar
  19. Hutchings, J.B., 1983 Pub. A. S. P., 95, 799.ADSCrossRefGoogle Scholar
  20. Kelley, K.K. 1973 In Selected Values of Thermodynamic Properties of the Elements, Am. Soc. Metals, Metals Park, pp. 87 ff.Google Scholar
  21. MacAlpine, G.M. 1985 in Astrophysics of Active Galactic Nuclei, ed. J.S. Miller (Mill Valley: Univ. Science Books), 259.Google Scholar
  22. MacKenty, J.W., and Stockton, A. 1984 Ap. J., 327, 116.Google Scholar
  23. Martin, P.G. 1978 Cosmic Dust, Oxford: Clarendon Press.Google Scholar
  24. Moorwood, A.F.M. 1989 in Infrared Spectroscopy in Astronomy, ESA SP-290, eds. A.C.H. Glasse, M.F. Kessler, and R. Gonzalez-Riesta.Google Scholar
  25. Neugebauer, G., Soifer, B.T., Matthews, K., and Elias, J.H. 1989 A. J., 97, 957.ADSCrossRefGoogle Scholar
  26. Ostriker, E.C., and Binney, J.J. 1989 M. N. R. A. S., 237, 785.ADSGoogle Scholar
  27. Rees, M.J., Silk, J.I., Werner, M.W., and Wickramasinghe, N.C. 1969 Nature, 223, 788.ADSCrossRefGoogle Scholar
  28. Reif, F. 1965 Fundamentals of Statistical and Thermal Physics, (New York: McGraw-Hill).Google Scholar
  29. Sanders, D.B. Scoville, N.Z., and Soifer, B.T. 1988a Ap. J., 335, L1.ADSCrossRefGoogle Scholar
  30. Sanders, D.B., Soifer, B.T., Elias, J.H., Madore, B.F., Matthews, K., Neugebauer, G., and Scoville, N.Z. 1988b, Ap. J., 325, 74.ADSCrossRefGoogle Scholar
  31. Sanders, D.B, Phinney, E.S., Neugebauer, G., Soifer, B. T., and Matthews, K. 1989 Ap. J. in press.Google Scholar
  32. Scheuer, P.A.G. 1987 in Superluminal Radio Sources, eds. J.A. Zensus and T.J. Pearson (Cambridge: Cambridge U. Pr.), 104.Google Scholar
  33. Shlosman, I., and Begelman, M.C. 1988 Nature, 329, 810.ADSCrossRefGoogle Scholar
  34. Telesco, C.M., and Harper, D.A. 1980 Ap. J., 235, 392.ADSCrossRefGoogle Scholar
  35. Vietri, M. 1986 Ap. J., 306, 48.ADSCrossRefGoogle Scholar
  36. Unger, S.W., Pedlar, A., Axon, D.J., Whittle, D.M., Meurs, E.J.A., and Ward, M. J. 1987 M. N. R. A. S., 228, 671.ADSGoogle Scholar
  37. Usher, P.D. 1978 Ap. J., 222, 40.ADSCrossRefGoogle Scholar
  38. Whittet, D.C.B. 1988 in Dust in the Universe, eds. M.E. Bailey and D.A. Williams, (Cambridge: Cambridge U. Pr.) 25.Google Scholar
  39. Wilson, A.S. and Ulvestad, J.S. 1982 Ap. J., 263, 576.ADSCrossRefGoogle Scholar
  40. Wright, E.L. 1987 Ap. J., 320, 818ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • E. Sterl Phinney
    • 1
  1. 1.Theoretical AstrophysicsPasadenaUSA

Personalised recommendations