Advertisement

Influence of Radiative Transfer on the Vertical Structure of Accretion Disks

  • Ivan Hubeny
Part of the NATO ASI Series book series (ASIC, volume 290)

Abstract

A brief review of various theoretical approaches to model accretion disks is presented. Emphasis is given to models that determine self-consistently the structure of a disk together with the radiation field. It is argued that a proper treatment of the vertical structure is essential for calculating theoretical spectra to be compared with observations. It is demonstrated that neither the blackbody nor model stellar atmosphere fluxes provide a satisfactory approximation of the emergent radiation. Finally, several models calculated with various degree of sophistication in treatment of interaction of radiation with matter, and with different values of viscosity, are intercompared, and possible diagnostic consequences are briefly discussed.

Keywords

Optical Depth Vertical Structure Accretion Disk Effective Temperature Central Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, J., Störzer, H., Shaviv, G., and Wehrse, R.: 1988, Astron. Astrophys. 193, L1ADSGoogle Scholar
  2. Adams, F. C., and Shu, F. H.: 1986, Astrophys. J.308, 836ADSCrossRefGoogle Scholar
  3. Auer, L. H., and Mihalas, D.: 1969, Astrophys. J.158, 641ADSCrossRefGoogle Scholar
  4. Cannizzo, J. K., and Cameron, A. G. W.: 1988, Astrophys. J.330, 327ADSCrossRefGoogle Scholar
  5. Cannizzo, J. K., and Wheeler, J. C.: 1984, Astrophys. J. Suppl.55, 367ADSCrossRefGoogle Scholar
  6. Frank, J., King, A. R., and Raine, D. J.: 1985, Accretion Power in Astrophysics, (Cambridge: Cambridge University Press)Google Scholar
  7. Friedjung, M.: 1985, Astron. Astrophys. 146, 366ADSGoogle Scholar
  8. Hubeny, I.: 1988, Computer Phys. Commun.52, 103ADSCrossRefGoogle Scholar
  9. Hubeny, I.: 1989 (in preparation)Google Scholar
  10. Kenyon, S. J., and Hartmann, L.: 1987, Astrophys. J.323, 714ADSCrossRefGoogle Scholar
  11. Kříž, S., and Hubeny, I.: 1986, Bull. Astron. Inst. Czech.37, 129ADSGoogle Scholar
  12. Lynden-Bell, D.: 1969, Nature 223, 690ADSCrossRefGoogle Scholar
  13. Lynden-Bell, D., and Pringle, J. E.: 1974, Mon. Not. R. A. S.168, 603ADSGoogle Scholar
  14. Mayo, S. K., Wickramasinghe, D. T., and Whelan, J. A. J.: 1980, Mon. Not R. A. S.193, 793ADSGoogle Scholar
  15. Meyer, F., and Meyer-Hofmeister, E.: 1982, Astron. Astrophys. 106, 34ADSGoogle Scholar
  16. Meyer, F., and Meyer-Hofmeister, E.: 1983, Astron. Astrophys. 128, 420ADSGoogle Scholar
  17. Mihalas, D.: 1978, Stellar Atmospheres (San Francisco: Freeman)Google Scholar
  18. Pringle, J. E.: 1981, Ann. Rev. Astron. Astrophys. 19, 137ADSCrossRefGoogle Scholar
  19. Shakura, N. I., and Sunyaev, R. A.: 1973, Astron. Astrophys. 24, 337ADSGoogle Scholar
  20. Shaviv, G., and Wehrse, R.: 1986, Astron. Astrophys. 159, L5ADSzbMATHGoogle Scholar
  21. Tylenda, R.: 1981, Acta Astron. 31, 127ADSGoogle Scholar
  22. Wade, R. A.: 1984, Mon. Not. R. A. S.208, 381ADSGoogle Scholar
  23. Wade, R. A.: 1988, Astrophys. J.335, 394ADSCrossRefGoogle Scholar
  24. Williams, R. E.: 1980, Astrophys. J.235, 939ADSCrossRefGoogle Scholar
  25. Williams, R. E., and Ferguson, D. H.: 1982, Astrophys. J.257, 672ADSCrossRefGoogle Scholar
  26. Williams, G. A., and Shipman, H. L.: 1988, Astrophys. J.326, 738ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Ivan Hubeny
    • 1
  1. 1.High Altitude ObservatoryNational Center for Atmospheric ResearchBoulderUSA

Personalised recommendations