Advertisement

Mass Transfer by Tidally Induced Spiral Shocks in An Accretion Disc

  • Takuya Matsuda
  • Nobuhiro Sekino
  • Eiji Shima
  • Keisuke Sawada
  • Henk Spruit
Part of the NATO ASI Series book series (ASIC, volume 290)

Abstract

Numerical simulations of two-dimensional adiabatic inviscid flow in an accretion disc in a binary system or a proto-planetary system are performed using a second-order accurate implicit Roe upwind scheme. A purpose of the work is to estimate quantitatively the amount of mass accretion rate due to spiral shocks produced by a less massive component. The mass ratio of the binary system, q, is varied to see the tidal effect of the less-massive component on the formation of spiral shocks. Five cases, namely q = 0, 10-3, 10-2, 10-1, 1, are examined. In the case of q ≥ 10-2 steady spiral shocks persist until the end of the calculations, i.e. about 15–20 rotation periods. If q is as small as 10-3, i.e. the case of the Jupiter, the amplitude of the spiral waves is not very strong. On the basis of calculated mass accretion rate, we can determine an effective α parameter in the standard accretion disc model. It depends on q, and we found that 4 · 10-4α eff ≤ 4 · 10-2 for 10-3q ≤ 1.

Keywords

Mass Flow Rate Accretion Disc Coarse Grid Fine Grid Spiral Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Drury, L.O’C.: 1977, PhD Thesis, Cambridge University, UKGoogle Scholar
  2. Drury, L.O’C.: 1980, Mon. Not. R. astron. Soc., 193 337ADSGoogle Scholar
  3. Drury, L.O’C.: 1985, Mon. Not. R. astron. Soc., 217 821MathSciNetADSzbMATHGoogle Scholar
  4. Flannery, B. P.: 1975, Ap. J., 201 661ADSCrossRefGoogle Scholar
  5. Frank, J., King, A.R. & Raine, D.J.: 1985, Accretion power in astrophysics, Cambridge University PressGoogle Scholar
  6. Goldreich, P. & Tremaine, S.: 1980, Ap. J., 241 425MathSciNetADSCrossRefGoogle Scholar
  7. Hensler, G.: 1982, Astr. Ap., 114 309; 114, 319ADSzbMATHGoogle Scholar
  8. Kaisig, M.: 1989a,b, Astr. Ap., in press Google Scholar
  9. Kaisig, M.: 1989c, in preparationGoogle Scholar
  10. Larson, R.B.: 1988, in The formation and evolution of planetary systems eds. H.A. Weaver et al., Cambridge University PressGoogle Scholar
  11. Lin, D.N.C. & Pringle, J.E.: 1976, in Structure and evolution of close binary systems eds. P. Eggleton et al., Reidel, DordrechtGoogle Scholar
  12. Lin, D.N.C. & Papaloizou, J.: 1979, Mon. Not. R. astron. Soc., 186 799ADSzbMATHGoogle Scholar
  13. Lin, D.N.C. & Papaloizou, J.: 1986, Ap. J., 307 395ADSCrossRefGoogle Scholar
  14. Matsuda, T., Inoue, M., Sawada, K., Shima, E. & Wakamatsu, K.: 1987, Mon. Not. R. astron. Soc., 229 295ADSzbMATHGoogle Scholar
  15. Michel, F.C.: 1984, Ap. J., 279 807ADSCrossRefGoogle Scholar
  16. Narayan, R., Goldreich, P. & Goodman, J.: 1987, Mon. Not. R. astron. Soc., 228 1ADSzbMATHGoogle Scholar
  17. Ohtsuki, K. & Nakagawa, Y.: 1989, Prog. Theor. Phys. Suppl. No. 96 Origin of solar system, Chap.17Google Scholar
  18. Papaloizou, J.C.B. & Pringle, J.E.: 1984, Mon. Not. R. astron. Soc., 208 721ADSzbMATHGoogle Scholar
  19. Papaloizou, J.C.B. & Pringle, J.E.: 1985, Mon. Not. R. astron. Soc., 225 267ADSGoogle Scholar
  20. Petterson, J.A.: 1983, in Accretion-driven stellar X-ray sources eds Lewin, W.H.G. & van den Heuvel, E.P.J., Cambridge University PressGoogle Scholar
  21. Prendergast, K.H. & Taam, R.E.: 1974, Ap. J., 189 125ADSCrossRefGoogle Scholar
  22. Pringle, J.E.: 1981, Ann. Rev. Astr. Ap., 19 137ADSCrossRefGoogle Scholar
  23. Pringle, J.E. & Rees, M.: 1972, Astr. Ap., 21 1ADSGoogle Scholar
  24. Sawada, K., Matsuda, T. & Hachisu, I.: 1986a, Mon. Not. R. astron. Soc., 219 75ADSGoogle Scholar
  25. Sawada, K., Matsuda, T. & Hachisu, I.: 1986b, Mon. Not. R. astron. Soc., 221 679ADSGoogle Scholar
  26. Sawada, K., Matsuda, T., Inoue, M. & Hachisu, I.: 1987, Mon. Not. R. astron. Soc., 224 307ADSGoogle Scholar
  27. Sekiya, M., Miyama, S.M. & Hayashi, C.: 1987, Earth, Moon, Planets 39, 1ADSCrossRefGoogle Scholar
  28. Sekiya, M., Miyama, S.M. & Hayashi, C.: 1989, Prog. Theor. Phys. Suppl. No. 96, Origin of solar system, Chap.27Google Scholar
  29. Shakura, N.I. & Sunyaev, R.A.: 1973, Astr. Ap., 24 337ADSGoogle Scholar
  30. Shu, F.H.: 1976, in Structure and evolution of close binary systems eds. P. Eggleton et al., D.Reidel, DordrechtGoogle Scholar
  31. Sorensen, S.A., Matsuda, T. & Sakurai, T.: 1975, Astrophys. Space Sci.33, 465ADSGoogle Scholar
  32. Sorensen, S.A., Matsuda, T. & Fujimoto, M.: 1976 Astrophys. Space Sci.43, 491ADSCrossRefGoogle Scholar
  33. Spruit, H.C.: 1987, Astr. Ap., 184 173ADSzbMATHGoogle Scholar
  34. Spruit, H.C., Matsuda, T., Inoue, M. & Sawada, K.: 1987, Mon. Not. R. astron. Soc., 229 517ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Takuya Matsuda
    • 1
  • Nobuhiro Sekino
    • 1
  • Eiji Shima
    • 2
  • Keisuke Sawada
    • 2
  • Henk Spruit
    • 3
  1. 1.Department of Aeronautical EngineeringKyoto UniversityKyotoJapan
  2. 2.Aircraft Engineering DivisionKawasaki Heavy IndustriesKakamigaharaJapan
  3. 3.Max-Planck Institute für Physik und Astrophysik, Institute für AstrophysikGarching bei MünchenGermany

Personalised recommendations