Modelling of Metal-Oxide Interface Behaviour During Oxide Scale Growth Controlled by Cation Diffusion

  • B. Pieraggi
Part of the NATO ASI Series book series (NSSE, volume 173)


The growth of cation-diffusing scales on pure metals is described from a modelling of metal-scale interface in terms of intrinsic dislocations for an epitaxial scale; such a model is consistent with the experimental observations. It is proposed that the annihilation of cationic vacancies occurs at the metal-scale interface by the climb into the metal of some fraction of the intrinsic misfit interface dislocations, a process which generates tensile stress in the metal and compression in the scale. Above a critical interfacial strain, the glide of dislocations in the metal, in combination with dislocation glide in the scale, recreates the interface dislocations. These processes provide plastic deformation in both phases near the interface and maintain metal-scale epitaxy during oxide growth. The model may explain the origin of stresses arising during the growth of cation-diffusing scales on an extensive flat surface.


Oxide Scale Nickel Oxide Growth Stress Oxide Growth Scale Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    W.W. Smeltzer, ‘Growth and Mass Transport in Ceramic Type Protective Scales on Metals’, this volume.Google Scholar
  2. 2).
    High Temperature Corrosion, R.A. Rapp, ed., NACE, (1983).Google Scholar
  3. 3).
    High Temperature Corrosion, R. Streiff, J. Stringer, R.C. Krutenat and M. Caillet, eds., Elsevier (1987).Google Scholar
  4. 4).
    Oxidation of metals and associated mass transport, M.A. Dayananda, S.J. Rothman and W.E. King, eds., TMS Publications (1987).Google Scholar
  5. 5).
    R. Kofstad, High Temperature Corrosion, Elsevier Applied Science (1988).Google Scholar
  6. 6).
    R.A. Rapp, ‘The High Teperature Oxidation of Metals forming Cation-Diffusing Scales’, Met. Trans, 15 (1984), 765–782.CrossRefGoogle Scholar
  7. 7).
    J. Stringer, ‘Stress Generation and Relief in Growing Oxide Films’, Corr. Sci., 10 (1970), 513–543.CrossRefGoogle Scholar
  8. 8).
    P. Hancock and R.C. Hurst, ‘The Mechanical Properties and Breakdown of Surface Oxide Films at Elevated Temperatures’, Adv. Corr. Sci. and Techn., 4 M.G. Fontana and R.W. Staehle, eds., Plenum Press, (1974), 1–74.Google Scholar
  9. 9).
    Stress Effects in the Oxidation of Metals,J.V.Cathcart, ed., AIME,1974Google Scholar
  10. 10).
    G. Beranger, A.M. Huntz and B. Pieraggi, ‘Stress Effects in High Temperature Corrosion: Internal Stresses, Applied Stresses’, Corrosion des Matériaux ā Haute Température, G. Beranger, J.C. Col son and F. Dabosi, eds., Editions de Physique (1987) 227–269.Google Scholar
  11. 11).
    F.N. Rhines and J.S. Wolf, ‘The role of Oxide Microstructure and Growth Stresses in the High Temperature Scaling of Nickel’, Metall. Trans., 1 (1970), 1701–1710.CrossRefGoogle Scholar
  12. 12).
    M.V. Speight and J.E. Harris, ‘The Generation of Stresses in Oxide Growing by Cation Diffusion’, Acta Met., 26 (1978), 1043–1045.CrossRefGoogle Scholar
  13. 13).
    A. Atkinson, ‘Conditions for the Formation of New Oxide within Oxide Films Growing on Metals’, Corr. Sci., 22 (1982), 347–357.CrossRefGoogle Scholar
  14. 14).
    B.W. Dunnington, F.H. Beck and M.G. Fontana, ‘Scale Formation on Iron at High Temperature’, Corrosion, 8 (1952), 2–13.Google Scholar
  15. 15).
    R.F. Tylecote and T.E. Mitchell, ‘Marker Movement in the Oxidation of Iron and some other Metals’, J. Iron Steel Inst., 196 (1960), 445–453.Google Scholar
  16. 16).
    P. Hancock and R. Fletcher, ‘The Oxidation of Nickel in the Temperature Range 700–1000°C’, Metallurgie, 6 (1966), 1–9.Google Scholar
  17. 17).
    M. Cagnet and J. Moreau, ‘The Readsorption of Gaps of Ferrous Oxide during Oxidation of Iron at High Temperature’, CR Acad. Sciences Fr., 244 (1957), 2925–2928.Google Scholar
  18. 18).
    H.T. Sawhill, L.W. Hobbs and M.T. Tinker, ‘Interface Structure of Nickel Oxide on Nickel Substrates’, Adv. In. Ceramics, 6, M.F Yan and A.H. Heuer, eds., Amer. Ceram. Soc., (1983), 128–138.Google Scholar
  19. 19).
    M. Leseur and B. Pieraggi, ‘Structure of Metal-Oxide Interfaces’, J. de Physique, C4 (1985), 135–140.Google Scholar
  20. 20).
    J.M. Perrow, W.W Smeltzer and J.O Embury, ‘Role of Structural Defects in the Growth of Nickel Oxide Films’, Acta Met, 16, 1988), 1209–1218CrossRefGoogle Scholar
  21. 21).
    R. Herchl, N.N. Khoi, T. Homma and W.W. Smeltzer, ‘Short-Circuit Diffusion in the Growth of Nickel Oxide Scales on Nickel Crystal Faces’, Qxid. Metals, 4 (1972), 35–49.CrossRefGoogle Scholar
  22. 22).
    B. Pieraggi and R.A. Rapp, ‘Stress Generation and Vacancy Annihilation during Scale Growth Limited by Cation-Vacancy Diffusion’, Acta Metall., 36, (1988), 1281–1289.CrossRefGoogle Scholar
  23. 23).
    J.E. Harris, ‘Vacancy Injection during Oxidation - A Re-examination of the Evidence’, Acta Metall., 26 (1978), 1043–1045.CrossRefGoogle Scholar
  24. 24).
    B. Pieraggi, F.J.J, van Loo and R.A. Rapp, ‘Fluxes and interface Migration in Diffusion-Driven Phase Transformations’, Diffusion Analysis and Applications, A.D. Romig, M.S. Dayananda and R.H. Heckel, Eds, TMS Proceedings, (1988), to be published.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • B. Pieraggi
    • 1
  1. 1.Lab. Physical MetallurgyURA CNRS 445, ENSCTToulouseFrance

Personalised recommendations