Stationary Shock Waves and Solitons

  • M. I. Rabinovich
  • D. I. Trubetskov
Part of the Mathematics and Its Applications (Soviet Series) book series (MASS, volume 50)


Depending on the physical situation, different things happen after an infinite gradient arises in the profile of a simple wave. For example, if the wave is on a liquid surface, then it simply caves in, forming foam; if it is a stream of noninteracting particles, then a multivalued situation arises in the wave profile and after the formation of “discontinuity” in the main flow, several different flows moving at very different velocities form. For sound or electromagnetic fields, however, where multivaluedness is impermissible, the way the nonlinear wave develops depends on which effect predominates in the region of the rapidly changing field, i.e., dissipative or dispersion effects. We shall now study travelling waves in nonlinear media with dissipation and dispersion.


Shock Wave Solitary Wave Nonlinear Wave Stationary Wave Shock Wave Front 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Courant and K. Friedricks, Supersonic flow and Shock Waves [Russian translation], Izd. Ino. Lit., Moscow (1950).Google Scholar
  2. 2.
    Ya.B. Zel’dovich and Yu.P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena [in Russian], Nauka, Moscow (1966).Google Scholar
  3. 3.
    L.I. Sedov, Similarity and Dimensional Analysis in Mechanics [in Russian], Nauka, Moscow (1977).Google Scholar
  4. 4.
    B. B. Kadomtsev, Group Phenomena in Plasmas [in Russian], Nauka, Moscow (1976).Google Scholar
  5. 5.
    B.B. Kadomtsev and V.I. Karpman, “Nonlinear waves,” UFN, 103, 193–232 (1971).MathSciNetGoogle Scholar
  6. 6.
    A.V. Gaponov, L.A. Ostrovshkii, and G.I. Freidman, “Electromagnetic shock waves,” Izv. Vuzov: Radiofiz, 10, 1371 (1967).Google Scholar
  7. 7.
    Yu.K. Bogastyrev, Impulse Devices with Nonlinear Distributed Parameters [in Russian], Sovetskii Radio, Moscow (1974).Google Scholar
  8. 8.
    A.M. Belyantsev, A.V. Gaponov, E.Ya. Daume, and G.I. Freidman, “Experimental investigation of the propagation of electromagnetic waves with finite amplitudes in wave guides filled with ferrite,” Zh.Exp.Teor.Fiz., 47, 1699 (1964).Google Scholar
  9. 9.
    V.I. Karpman, Nonlinear Waves in Dispersing Media [in Russian], Nauka, Moscow (1976).Google Scholar
  10. 10.
    A.C. Scott, F.Y.E. Chu, and D.W. Mclaughlin, “Soliton: A new concept in applied science” in: A.C. Scott, Active and Nonlinear Wave Propagation in Electronics (Wiley Interscience 1970) [Russian translation], Sovetskii Radio, Moscow (1977).Google Scholar
  11. 11.
    V.E. Zakharov, S.V. Manakov, S.P. Novikov, and L.P. Pitaevskii, Soliton Theory. The Method of Inverse Problems [in Russian], Nauka, Moscow (1980).Google Scholar
  12. 12.
    K. E. Lonngren and A.C. Scott (eds), Solitons in Action (Acad. Press 1978) [Russian translation], Mir, Moscow (1981).Google Scholar
  13. 13.
    K. Rebbi, “Solitons,” UFN, 130, 329–356 (1980).CrossRefGoogle Scholar
  14. 14.
    L.D. Landau and E.M. Lifshits, Quantum Mechanics [in Russian], Nauka, Moscow (1974).Google Scholar
  15. 15.
    N.J. Zabusky and M.D. Kruskal, “Interaction of solitons in a collisionless plasma and recurrence of initial states,” Phys. Rev. Lett., 15, 240–243 (1965)..zbMATHCrossRefGoogle Scholar
  16. 16.
    K.A Gorshkov, L.A. Ostrovskii, and V. V. Papko, “Interaction and coupled states between solitions as classical particles,” Zh.Exp.Teor.Fiz., 71, 585 (1976).Google Scholar
  17. 17.
    V.I. Petviashvili, “Inhomogeneous solitons” in: A.V. Gaponov (ed), Nonlinear Waves [in Russian], Nauka, Moscow (1979), p. 5.Google Scholar
  18. 18.
    V.I. Petviashvili, “Jupiter’s red spot and drift solitons in plasmas,” Let. to Zh.Exp.Teor.Fiz., 32, 632 (1980).Google Scholar
  19. 19.
    S.V. Antipov, M.V. Nezlin, E.N. Snezhkin, and A.S. Trubetskov, “Rossby solitons in the laboratory,” Zh.Exp.Teor.Fiz., 82, 145 (1982).Google Scholar
  20. 20.
    V.M. Kamenkovich and A.S. Monin, Fluid Mechanics of the Ocean [in Russian], Nauka, Moscow (1978), Ch.8.Google Scholar
  21. 21.
    C.S. Gardner, J.M. Green, and R.M. Miara, “Method for solving the Korteveg-de Vries equation,” Phys. Rev. Lett., 19, 1095–1097 (1967).zbMATHCrossRefGoogle Scholar
  22. 22.
    V.E. Zakharov, “Instability in nonlinear soliton oscillations,” Let. to Zh.Exp.Teor.Fiz., 22, 364 (1975).Google Scholar
  23. 23.
    M.V. Nezlin, E.N. Snezhkin, and A.S. Trubetskov, “Kelvin-Helmholtz instability and Jupiter’s big red spot,” Let to Zh.Exp.Teor.Fiz., 36, 190–193 (1982).Google Scholar
  24. 24.
    E.A. Zabolotskaya and R.V. Khokhlov, “Converging and diverging beams in nonlinear media,” Akust. Zh., 16, 49 (1970).Google Scholar
  25. 25.
    A.T. Filipov, The Multifaced Soliton [in Russian], Nauka, Moscow (1986).Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • M. I. Rabinovich
    • 1
  • D. I. Trubetskov
    • 2
  1. 1.Institute of Applied PhysicsAcademy of Sciences of the USSRGorkyUSSR
  2. 2.Saratov State UniversityUSSR

Personalised recommendations