The Nonlinear Oscillator

  • M. I. Rabinovich
  • D. I. Trubetskov
Part of the Mathematics and Its Applications (Soviet Series) book series (MASS, volume 50)


We shall analyze the oscillation and wave phenomena, and their corresponding models, in nonlinear systems and media (i.e., nonlinear oscillations and nonlinear waves) in parallel, as we did in the first part of the book. We have a few short remarks to make, mainly historical.


Nonlinear Oscillator Parametric Resonance Phase Trajectory Resonance Curve Velocity Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.V. Gaponov-Grekhov and M.I. Rabinovich, “L.I. Mandel’shtam and the modern theory of nonlinear oscillations,” UFN, 128, 579–624 (1979).MathSciNetCrossRefGoogle Scholar
  2. 2.
    L.I. Mandel’shtam, Lectures on Oscillation Theory [in Russian], Nauka, Moscow (1972).Google Scholar
  3. 3.
    A. Blaquiere, Nonlinear Systems Analysis [Russian translation], Mir, Moscow (1969).Google Scholar
  4. 4.
    V.L. Bratman, N.S. Ginzburg, and M.I. Petelin, “Theory of free electron lasers and masers” in: Lectures on Microwave Electronics and Radiophysics, 5-th Summer School-Seminar for Engineers [in Russian], Izd. Saratovskogo Univ., Saratov (1981), Vol.4, pp. 69–172.Google Scholar
  5. 5.
    A.V. Gaponov, M.I. Petelin, and V.K. Yulpatov, “Induced radiation of excited classical oscillators and its application to microwave electronics,” Izv. Vuzov: Radiotekh., 10, 1414–1453 (1967).Google Scholar
  6. 6.
    B.B. Kadomtsev, Group Phenomena in Plasmas [in Russian], Nauka, Moscow (1976).Google Scholar
  7. 7.
    L.A. Vainstein, “Electron waves in breaking systems. On the nonlinear equations of the travelling wave tube,”“Radio i Elekt., 2, 688–695 (1957).MathSciNetGoogle Scholar
  8. 8.
    L.A. Vainstein, “Nonlinear theory of travelling wave tubes,” Radio i Elekt., 2, 883–894 (1957).MathSciNetGoogle Scholar
  9. 8a.
    L.A. Vainstein, “Nonlinear theory of travelling wave tubes,” Radio i Elekt., 2, 1027–1047 (1957).MathSciNetGoogle Scholar
  10. 9.
    V.T. Ovcharov (ed), Travelling Wave Tube, Collection of Translated Articles [Russian translation], Gosenergoizdat, Moscow (1959).Google Scholar
  11. 10.
    G.M. Zaslavskii and B.V. Chirikov, “Stochastic Instability of nonlinear oscillations,” UFN, 105, 7–13 (1971).Google Scholar
  12. 11.
    L.D. Landau and E.M. Lifshits, Mechanics [in Russian], Nauka, Moscow (1965).Google Scholar
  13. 12.
    G.M. Zaslavskii, Statistical Irreversibility in Nonlinear Systems [in Russian], Nauka, Moscow (1970).Google Scholar
  14. 13.
    B.V. Chirikov, Nonlinear Resonance [in Russian], Izd. Novosibirskogo Univ., Novosibirsk (1977).Google Scholar
  15. 14.
    V.P. Reutov, “Plasma hydrodynamics analogy and the nonlinear stage of vortex wave instability,” Izv. Akad. Nauk SSSR, Fiz. Atm. i Okeana, 16, 1266–1275 (1980).Google Scholar
  16. 15.
    A.A. Andronov and A.L. Fabrikant, “Landau damping, vortex waves, and surf” in: Nonlinear Waves [in Russian], Nauka, Moscow (1979), p.68.Google Scholar
  17. 16.
    R. Betchov and W.O. Criminale, Stability of Parallel Flows [Russian translation], Mir, Moscow (1971).Google Scholar
  18. 17.
    V.D. Shapiro and V.I. Shevchenko, “Wave-particle interactions in nonequilibrial media,” Izv. Vuzov: Radiofiz., 19, 767 (1976).Google Scholar
  19. 18.
    R.V. Khokhlov, “On the propagation of waves in nonlinear dispersing lines,” Radio i Elekt., 6, 1116 (1961).Google Scholar
  20. 19.
    R.V. Khokhlov, “Towards the theory of shock waves in nonlinear lines,” Radio i Elekt., 6, 917 (1961).Google Scholar
  21. 20.
    G.M. Zaslavskii, Stochasticity of Dynamic Systems [in Russian], Nauka, Moscow (1984), chs.1–4.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • M. I. Rabinovich
    • 1
  • D. I. Trubetskov
    • 2
  1. 1.Institute of Applied PhysicsAcademy of Sciences of the USSRGorkyUSSR
  2. 2.Saratov State UniversityUSSR

Personalised recommendations