Advertisement

Thermodynamic Behaviour of Oxygen in Molten Metallic Alloys

  • Sabri Anik
  • Martin G. Frohberg
Part of the NATO ASI Series book series (ASIC, volume 286)

Abstract

A statistical solution model is introduced to explain the thermodynamic behaviour of oxygen in liquid binary metallic solvents. The model permits the prediction of thermodynamic data of oxygen in the whole concentration range of homogeneous alloy melts only from the properties of the limiting binary systems. The approach is capable to evaluate the self interaction parameter and therefore to describe the thermodynamics of oxygen not only in its dilute but also in higher concentration range up to saturation. By means of emf-measurements and quenching experiments the activities and solubilities of oxygen in the liquid systems Cu-O-Bi, Cu-O-Pb, Bi-O-Pb, Bi-O-Sb and Pb-O-Sb were determined. The theoretical approach is checked by the results.

Keywords

Interaction Parameter Activity Coefficient Energy Term Infinite Dilution Interstitial Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    J.F. Elliott and J. Chipman, Chemical Metallurgy of Iron and Steel, Iron and Steel Inst., London (1973), 348.Google Scholar
  2. 2).
    U. Block, Met. Trans., 1 (1970), 2018.CrossRefGoogle Scholar
  3. 3).
    C. Wagner, Acta Met., 21 (1973), 1297.CrossRefGoogle Scholar
  4. 4).
    K.T. Jacob and C.B. Alcock, Acta Met., 20 (1972), 221.CrossRefGoogle Scholar
  5. 5).
    M.L. Kapoor, Tans. JIM, 18 (1977), 125.Google Scholar
  6. 6).
    M.L. Kapoor, Scripta Met., 10 (1976), 323.CrossRefGoogle Scholar
  7. 7).
    T. Chiang and Y.A. Chang, Met. Trans., 7B (1976), 453.Google Scholar
  8. 8).
    S.H. Kuo and Y.A. Chang, Met. Trans., 9B (1978), 154.Google Scholar
  9. 9).
    Y.A. Chang and D.C. Hu, Met. Trans., 10B (1979), 43.Google Scholar
  10. 10).
    M.L. Kapoor, Int. Met. Reviews, 20 (1975), 150.Google Scholar
  11. 11).
    I. Prigogine, The Molecular Theory of Solutions, North-Holland Pub.Co., Amsterdam (1957).Google Scholar
  12. 12).
    R.H. Fowler and E.A. Guggenheim, Statistical Thermodynamics, University Press, Cambridge (1960).Google Scholar
  13. 13).
    M. Blander, M.L. Saboungi and P. Cerisier, Met. Trans., 10B (1979), 613.Google Scholar
  14. 14).
    S. Anik, M.L. Kapoor and M.G. Frohberg, Z. Metallkde., 74 (1983), 53.Google Scholar
  15. 15).
    S. Anik, M.L. Kapoor and M.G. Frohberg, Z. Metallkde., 74 (1983), 372.Google Scholar
  16. 16).
    W. Stichel, Dissertation TU Berlin 1967.Google Scholar
  17. 17).
    B. Isecke, Dissertation TU Berlin 1977.Google Scholar
  18. 18).
    S. Anik and M.G. Frohberg, Z. Metallkde., 74 (1983), 530.Google Scholar
  19. 19).
    W. Zaiss und S. Steeb, Phys. Chem. Liq., 6 (1976), 1.Google Scholar
  20. 20).
    W. Zaiss und S. Steeb, Phys. Chem. Liq., 6 (1976), 43.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Sabri Anik
    • 1
  • Martin G. Frohberg
    • 1
  1. 1.Institut für Metallurgie — Allgemeine MetallurgieTechnische Universität BerlinGermany

Personalised recommendations