Advertisement

Mass-Spectrometric Determination of Thermodynamic Mixing Effects of Alloys

  • A. Neckel
Part of the NATO ASI Series book series (ASIC, volume 286)

Abstract

The combination of a Knudsen cell with a mass spectrometer is particularly suitable for the determination of thermodynamic activities and thermodynamic mixing functions of liquid and solid alloys. A significant problem in the application of this technique is created by small changes in the instrumental sensitivity when the sample is changed. This effect precludes the accurate determination of thermodynamic activities by measuring the intensities of the ion currents produced by the alloy and the pure component in two different experiments, one with the alloy and the other with the pure component. In the present article an overview is given on the various methods which have been proposed to overcome this difficulty. One group of methods is based upon the use of dual, triple or multiple cells. However, most widely applied are intensity ratio methods, whereby the ratio of the intensities of the ion currents of two species present in the vapour phase above an alloy is determined in a single experiment. Particularly, the intensity ratio-integration methods are thoroughly described and discussed.

Keywords

Vapour Phase Ionization Cross Section Excess Gibbs Energy Thermodynamic Activity Quadrupole Mass Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D.W. Bonnell and J.W. Hastie, in Characterization of High Temperature Vapors and Gases, ed. J.W. Hastie, NBS SP 561/1 and 2, U.S.Govt.Printing Office, Washington, DC (1979)Google Scholar
  2. [2]
    J.W. Hastie, Pure and Appl.Chem. 56, 1583 (1984)CrossRefGoogle Scholar
  3. [3]
    A. Fuwa, K. Sugawara, and E. Kato, J. Japan Inst.Metals 48, 1168 (1984)Google Scholar
  4. [4]
    J. Drowart and P. Goldfinger, Angew.Chem. 79, 589 (1967)CrossRefGoogle Scholar
  5. [5]
    R.T. Grimley, in The Characterization of High Temperature Vapors, ed. J.L. Margrave, John Wiley, 1967, p.195Google Scholar
  6. [6]
    D.J. Fabian, Metall.Rev. 12, 27 (1967)Google Scholar
  7. [7]
    F.K. Raychaudhuri and F.E. Stafford, Mat.Sci.Eng. 20, 1 (1975)CrossRefGoogle Scholar
  8. [8]
    F.E. Stafford, High Temperatures-High Pressures 3, 213 (1971)Google Scholar
  9. [9]
    K.A. Gingerich, J. Cryst.Growth 9, 31 (1971)CrossRefGoogle Scholar
  10. [10]
    K.A. Gingerich, in Current Topics in Materials Science, Vol.6, ed. E. Kaldis, North Holland Publ.Company, 1980, p.345Google Scholar
  11. [11]
    L.N. Sidorov, L.V. Zhuravleva, and I.D. Sorokin, Mass Spectrometry Reviews 5, 73 (1986)CrossRefGoogle Scholar
  12. [12]
    C. Chatillon, A. Pattoret, and J. Drowart, High Temperatures-High Pressures 7, 119 (1975)Google Scholar
  13. [13]
    J. Drowart, in Advances in Mass Spectrometry 1985, ed. J.F.J. Todd, John Wiley, 1986, p.195Google Scholar
  14. [14]
    J. Tomiska, J. Phys.E: Sci.Instrum. 17 1165 (1984)CrossRefGoogle Scholar
  15. [15]
    S.S. Lin and F.E. Stafford, J.Chem.Phys. 48, 3885 (1968)CrossRefGoogle Scholar
  16. [16]
    J.B. Mann, J.Chem.Phys. 46, 1646 (1967)CrossRefGoogle Scholar
  17. [17]
    J.B. Mann, in Recent Developments in Mass Spectrometry, ed. K. Ogata and T. Hayakawa, University Park Press, Baltimore, 1970, p.814Google Scholar
  18. [18]
    T.D. Mark, Int.J.Mass Spectrom.Ion.Phys. 45, 125 (1982)Google Scholar
  19. [19]
    T.D. Mark, in Electron Molecule Interactions and their Applications, ed. L.G. Christophorou, Academic Press, New York, 1984, p.251Google Scholar
  20. [20]
    T.D. Mark and G.H. Dunn, ed., Electron Impact Ionization, Springer, Vienna, 1984Google Scholar
  21. [21]
    R. Kematick, J. Anderegg, and H. Franzen, High Temperature Science 19, 17 (1985)Google Scholar
  22. [22]
    A. Büchler and J.L. Stauffer, in Thermodynamics, Vol.1, IAEA, Vienna, 1966, p.271Google Scholar
  23. [23]
    A. Pattoret, S. Smoes, and J. Drowart, in Thermodynamics, Vol.1, IAEA, Vienna, 1966, p.377Google Scholar
  24. [24]
    G. DeMaria and V. Piacente, Bull.Soc.Chim.Belg. 81, 155 (1972)CrossRefGoogle Scholar
  25. [25]
    R.T. Grimley and T.E. Joyce, J.Phys.Chem. 73, 3047 (1969)CrossRefGoogle Scholar
  26. [26]
    T.E. Joyce, T.Y. Ridley, and R.T. Grimley, Rev.Sci.Instrum. 41, 1789 (1970)CrossRefGoogle Scholar
  27. [27]
    R.W. Jones, F.E. Stafford, and D.H. Whitmore, Metall.Trans. 1, 403 (1970)Google Scholar
  28. [28]
    C. Bergman, M. Lafitte, and Y. Muggianu, High Temperatures-High Pressures 6, 53 (1960)Google Scholar
  29. [29]
    C. Chatillon, C. Senillou, M. Alibert, and A. Pattoret, Rev.Sci. Instrum. 47, 334 (1976)CrossRefGoogle Scholar
  30. [30]
    A. Neubert, J. Chem.Thermodynamics 11, 971 (1979)CrossRefGoogle Scholar
  31. [31]
    L. Martin-Garin, C. Chatillon, and M. Alibert, Journ.Less-Common-Metals 63, P9 (1979)CrossRefGoogle Scholar
  32. [32]
    G.R. Johnston and L.D. Palmer, High Temperatures-High Pressures 12, 261 (1980)Google Scholar
  33. [33]
    M.E. Paulaitis and C.A. Eckert, J. Chem.Thermodynamics 15, 55 (1983)CrossRefGoogle Scholar
  34. [34]
    M. Hoch and R.J. Usell, Jr., Met.Trans. 2, 2627 (1971)CrossRefGoogle Scholar
  35. [35]
    J.V. Hackworth, M. Hoch, and H.L. Geyel, Met.Trans. 2, 1799 (1971)Google Scholar
  36. [36]
    A. Neckel and S. Wagner, Ber.Bunsenges.physik.Chem. 73, 210 (1969)Google Scholar
  37. [37]
    S. Wagner and G.R.St. Pierre, Metall.Trans. 3, 2873 (1972)CrossRefGoogle Scholar
  38. [38]
    G. Sodeck, P. Entner, and A. Neckel, High Temperature Science 2, 311 (1970)Google Scholar
  39. [39]
    S. Wagner, G. Sodeck, and A. Neckel, High Temperature Science 3, 481 (1971)Google Scholar
  40. [40]
    G.R. Belton and R.J. Fruehan, J.Phys.Chem. 71, 1403 (1967)CrossRefGoogle Scholar
  41. [41]
    G.R. Belton and R.J. Fruehan, Trans. TMS-AIME 245, 113 (1969)Google Scholar
  42. [42]
    J. Tomiska, H. Nowotny, L. Erdelyi, and A. Neckel, Z.Metallkd. 68, 350 (1977)Google Scholar
  43. [43]
    M. Margules, Sitz.Ber.Akad.Wiss.Wien, Math.Naturw.Kl. II, 104, 1243 (1895)Google Scholar
  44. [44]
    E.A. Guggenheim, Trans.Farad.Soc. 33, 151 (1937)CrossRefGoogle Scholar
  45. [45]
    O. Redlich and A.T. Kister, Ind.Eng.Chem. 40, 345 (1948)CrossRefGoogle Scholar
  46. [46]
    J. Tomiska, CALPHAD 10, 91 (1986)CrossRefGoogle Scholar
  47. [47]
    J. Tomiska, CALPHAD 10, 235 (1986)Google Scholar
  48. [48]
    J. Tomiska and A. Neckel, Z. Metallkd. 77, 649 (1986)Google Scholar
  49. [49]
    N.N. Sirota and M.B. Breslav-Maslennikov, Vestsi Akad.Navuk BSSR, Ser.Fiz.Mat.Navuk 1977, 81Google Scholar
  50. [50]
    N. Maruyama and S. Banya, Nippon Kinzoku Gakkaishi 42, 992 (1978)Google Scholar
  51. [51]
    B. Predel and R. Mohs, Arch.Eisenhiittenwes. 41, 143 (1970)Google Scholar
  52. [52]
    Y. Tozaki, Y. Iguchi, S. Banya, and T. Fuwa, Chemical Metallurgy of Iron and Steel, Proc.Int.Symp.Metal.Chem. — Appl.Ferrous Metall. 1971, The Iron and Steel Institute, 1973Google Scholar
  53. [53]
    G.I. Batalin, N.N. Minenko and V.S. Sudavtsova, Izv.Akad.Nauk SSSR, Met.(5), 1974, 99Google Scholar
  54. [54]
    Y. Iguchi, S. Nobori, K. Saito, and T. Fuwa, Tetsu to Hagane 68, 633 (1982)Google Scholar
  55. [55]
    J. Tomiska, Z. Metallkd. 77, 97 (1986)Google Scholar
  56. [56]
    A. Neckel and S. Wagner, Mh.Chem. 100, 664 (1969)Google Scholar
  57. [57]
    G.R. Belton and R.J. Fruehan, Met.Trans. 1 781 (1970)Google Scholar
  58. [58]
    G.R. Belton and R.J. Fruehan, Met.Trans. 2, 291 (1971)CrossRefGoogle Scholar
  59. [59]
    J. Tomiska, High Temperatures-High Pressures 14, 417 (1982)Google Scholar
  60. [60]
    T. Ohashi, Z. Kozuka, and J. Moriyama, Nagoya Kogyo Daigaku Gakuho 17, 354 (1965)Google Scholar
  61. [61]
    R.J. Fruehan, Met.Trans. 2, 1213 (1971)CrossRefGoogle Scholar
  62. [62]
    J. Berkowitz and W.A. Chupka, Ann.N.Y.Acad.Sci. 79, 1073 (1960)CrossRefGoogle Scholar
  63. [63]
    G. Rieckert, P. Lamparter, and S. Steeb, Z. Naturforsch. 31a, 711 (1976)Google Scholar
  64. [64]
    J.W. Hastie and J.L. Margrave, High Temp.Sci. 1, 481 (1969)Google Scholar
  65. [65]
    St.M. Howard and J. Hager, Met.Trans. 9B, 51 (1978)Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • A. Neckel
    • 1
  1. 1.Institute for Physical ChemistryUniversity of ViennaViennaAustria

Personalised recommendations