Advertisement

Experimental Determination of the Enthalpies of Formation of Binary Transition — Rare Earth Metal Alloys

  • C. Colinet
  • A. Pasturel
Part of the NATO ASI Series book series (ASIC, volume 286)

Abstract

A review is presented of enthalpies of formation obtained using aluminium solution calorimetry for solid alloys of transition metals with rare earth metals. The results are compared with literature data. Even large discrepancies between the different values are observed, all the results allow to discern the trends of the enthalpies of formation along the rare earth series and along the transition metal series, say the end of the first row and the Ni column. The results are compared with predictions derived from semi empirical model of Miedema and coworkers and from band theory models.

Keywords

Intermetallic Compound Base Alloy Calorimetric Method Light Lanthanide Element Solution Calorimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.R. Miedema, P.F. de Châtel and F.R. de Boer, ‘Cohesion in alloys Fondamentals of a semi-empirical model’, Physica, 100B (1980) pp.1–28 and references herein.Google Scholar
  2. 2.
    A.K. Niessen, F.R. de Boer, P.F. de Châtel, W.C.M. Mattens and A.R. Miedema, ‘Model predictions for the enthalpy of formation of transition metal alloys II’, Calphad, 7 (1983) pp.51–70.CrossRefGoogle Scholar
  3. 3.
    R.E. Watson and L.H. Bennett, ‘Optimized prediction for heats of formation of transition metal alloys’, Calphad, 5 (1981) pp.25–40.CrossRefGoogle Scholar
  4. 3a.
    R.E. Watson and L.H. Bennett, ‘Optimized predictions for heats of formation of transition metal alloys II’, Calphad, 8 (1984) pp.307–321.CrossRefGoogle Scholar
  5. 4.
    C. Colinet, A. Pasturel and P. Hicter, ‘Trends in cohesive energy of transition metal alloys’, Calphad, 9 (1985) pp.71–99.CrossRefGoogle Scholar
  6. 4a.
    C. Colinet and A. Pasturel, ‘Trends in cohesive energy in transition rare earth metal alloys’, Calphad, to be published.Google Scholar
  7. 5.
    J.C. Gachon, M. Dirand and J. Hertz, ‘Enthalpic and structural studies of the NiZr system’, J. Less-Common Met., 92 (1983) pp.307–315.CrossRefGoogle Scholar
  8. 5a.
    J.C. Gachon, J. Charles and J. Hertz, ‘Different ways to find the thermodynamic functions describing the formation of binary alloys’, Calphad, 9 (1985) pp.29–34.CrossRefGoogle Scholar
  9. 5b.
    J.C. Gachon and J. Hertz, ‘Enthalpies of formation of binary phases in the systems FeTi, FeZr, CoTi, CoZr, NiTi and NiZr by direct reaction calorimetry’, Calphad, 7 (1983) pp.1–12.CrossRefGoogle Scholar
  10. 5c.
    J.C. Gachon, M. Dirand and J. Hertz, ‘The enthalpies of formation of the intermediate phases Co0.33 Zr0.67, Co0.50Zr0.50, Co0.67 Zr 0.33 and CO 0.80 Zr 0.20 by direct reaction calorimetry at hign temperature’ J. Less-Common Met., 85 (1982) pp.1–9.CrossRefGoogle Scholar
  11. 5d.
    J.C. Gachon, J.L. Jorda, J. Charles and J. Hertz, ‘Thermodynamic study of the ZrRh system’, presented at Calphad Fulmer Grange UK, July 9–11 1986.Google Scholar
  12. 6.
    H. Yokokawa and O.J. Kleppa, ‘Thermochemistry of liquid alloys of transition metals. II (Copper + Titanium) at 1372 K’, J. Chem. Thermodyn., 13 (1981) pp.703–715.CrossRefGoogle Scholar
  13. 7.
    O.J. Kleppa and S. Watanabe, ‘Thermochemistry of alloys of transition metals. Part III Copper-Silver,-Titanium,-Zirconium, and-Hafnium at 1373K’, Metall. Trans., 13B (1982) pp.391–401.Google Scholar
  14. 8.
    O.J. Kleppa and L. Topor, ‘Thermochemistry of binary liquid gold alloys: the systems (Au+Cr), (Au+V), (Au+Ti), and (Au+Sc) at 1379K’, Metall. Trans., 16A (1985) pp.93–99.Google Scholar
  15. 9.
    L. Topor and O.J. Kleppa, ‘Enthalpy of formation of PdTi by high temperature mixing calorimetry’, Z. Metallkde., 77 (1986) pp.633–636.Google Scholar
  16. 9a.
    L. Topor and O.J. Kleppa, ‘Standard enthalpies of formation of PdZr and PdHf’, Metall. Trans, in press.Google Scholar
  17. 9b.
    L. Topor and O.J. Kleppa, ‘Standard enthalpies of formation of RhTi, RhZr and RhHf’, J. Less-Common Met., 135 (1987) pp.67–75.CrossRefGoogle Scholar
  18. 9c.
    L. Topor and O.J. Kleppa, ‘Thermochemistry of the intermetallic compounds RuTi, RuZr and RuHf’, Metall. Trans., in press.Google Scholar
  19. 10.
    I. Ansara, A. Pasturel and K.H.J. Buschow, ‘Enthalpy effects in amorphous alloys and intermetallic compounds in the system Zr-Cu’, Phys. Stat. Sol. (a), 69 (1982) pp.447–453.CrossRefGoogle Scholar
  20. 11.
    M.P. Henaff, C. Colinet, A. Pasturel and K.H.J. Buschow, ‘Study of the enthalpies of formation and crystallization in the system Zr-Ni’, J. Appl. Phys., 56 (1984) pp.307–310.CrossRefGoogle Scholar
  21. 12.
    S.S. Deodhar and P.J. Ficalora, ‘A study of the reaction kinetics for the formation of rare earth — transition metal laves compounds’, Metall. Trans., 6A (1975) pp.1909–1914.Google Scholar
  22. 13.
    A. Palenzona and S. Cirafici, ‘Thermodynamic and crystallographic properties of RePd intermetallic compounds’, Thermochim. Acta, 12 (1975) pp.267–275.CrossRefGoogle Scholar
  23. 13a.
    A. Palenzona and S. Cirafici, ‘Thermodynamic and crystallographic properties of RPt intermetallic compounds’, Thermochim. Acta, 25 (1978) pp.252–256.CrossRefGoogle Scholar
  24. 14.
    S. Watanabe and O.J. Kleppa, ‘A thermochemical study of liquid and solid alloys (1-x) La+x Ni) at 1376 K’, J. Chem. Thermodynamics, 15 (1983) 633–644.CrossRefGoogle Scholar
  25. 14a.
    S. Watanabe and O.J. Kleppa, ‘Thermochemistry of alloys of transition metals: Part IV. Alloys of copper with scandium, yttrium, lanthanum and lutetium’, Metall. Trans., 15B, (1984) pp.357–368.Google Scholar
  26. 15.
    P.R. Subramanian and J.F Smith, ‘Thermodynamics of formation of Y-Co alloys’, Metall. Trans., 16A (1985) pp.1195–1201.Google Scholar
  27. 15a.
    P.R. Subramanian and J.F. Smith, ‘Thermodynamics of formation of Y-Fe alloys’, Calphad, 8 (1984) pp.295–305.CrossRefGoogle Scholar
  28. 15b.
    P.R. Subramanian and J.F. Smith, ‘Thermodynamics of formation of Y-Ni alloys, Met. Trans., 16B (1985) pp.577–584.Google Scholar
  29. 16.
    J. Schott and F. Sommer, ‘Determination of the enthalpies of formation at intermetallic compounds of cobalt and nickel with dysposium, erbium and gadolinium’, J. Less-common Met., 119 (1986) pp.307–317.CrossRefGoogle Scholar
  30. 17.
    F. Sommer, J. Schott and B. Predel, ‘Thermodynamic investigations of Cu-Dy, Cu-Er, Cu-Gd and Cu-La alloys’, J. Less-Common Met., 125 (1986) pp.175–181.CrossRefGoogle Scholar
  31. 18.
    F. Meyer-Liautaud, S. Derkaoui, C.H. Allibert and R. Castanet, ‘Structural and thermodynamic data on the Pseudobinary phases R(Co(1-x) Cux)5 with R=Sm, Y, Ce’, J. Less-Common Met., 127 (1987) pp.231–242.CrossRefGoogle Scholar
  32. 18a.
    F. Meyer-Liautaud, C.H. Allibert and R. Castanet, ‘Enthalpies of formation of Sm-Co alloys in the composition range 10–22at%Sm’, J. Less-Common Met., 127 (1987) pp.243–250.CrossRefGoogle Scholar
  33. 19.
    C. Chatillon-Colinet, H. Diaz, J.C. Mathieu, A. Percheron-Guegan and J.C. Achard, ‘Determination of the enthalpies of formation of LaNi5 and LaNi 4Al by a calorimetric method’, Am. Chim. Fr., 8 (1979) pp.657–663.Google Scholar
  34. 20.
    C. Colinet and A. Pasturel, ‘A thermodynamic study of cerium behaviour in hexagonal CeNi5 compound’, Phys. Stat. Sol., (a) 80 (1983) K75–K79.CrossRefGoogle Scholar
  35. 21.
    A. Pasturel, C. Colinet, C. Allibert, P. Hicter, A. Percheron-Guegan and J.C. Achard, ‘A theoretical and experimental study of the enthalpies of formation of LaNi — Type compounds, Phys. Stat. Sol., (b) 125 (1984) pp.101–106.CrossRefGoogle Scholar
  36. 22.
    A. Pasturel, C. Chatillon-Colinet, A. Percheron-Guegan and J.C. Achard, ‘Thermodynamic properties of LaNi 4M compounds and their related hydrides’, J. Less-Common Met., 84 (1982) pp.73–78.CrossRefGoogle Scholar
  37. 23.
    A. Pasturel, F. Liautaud, C. Colinet, C. Allibert, A. Percheron-Guegan and J.C. Achard, ‘Thermodynamic study of the LaNi5-xCux system’, J. Less-Common Met., 96 (1984) pp.93–97.CrossRefGoogle Scholar
  38. 24.
    F. Meyer-Liautaud, A. Pasturel, C.H. Allibert and C. Colinet, ‘Enthalpies of formation of the La-Cu intermetallic phases’, J. Less-Common Met., 110 (1985) pp.75–80.CrossRefGoogle Scholar
  39. 25.
    F. Meyer-Liautaud, A. Pasturel, C.H. Allibert and C. Colinet, ‘Thermodynamic study of the valence state of cerium and hydrogen storage in Ce(Ni1-x Cux)5 compounds’, J. Less-Common Met., 110 (1985) pp.119–126.CrossRefGoogle Scholar
  40. 26.
    C. Colinet, A. Pasturel, A. Percheron-Guegan and J.C. Achard, ‘Enthalpies of formation and hydrogenation of La(Ni(1-x)Cox)5 compounds’, J. Less-Common Met., 134 (1987) pp.109–122.CrossRefGoogle Scholar
  41. 27.
    C. Colinet, A. Pasturel and K.H.J. Buschow, ‘Study of the enthalpies of formation in the Gd-Ni system’, Met. Trans., 17A (1986) pp.777–780.Google Scholar
  42. 27a.
    C. Colinet, A. Pasturel and K.H.J. Buschow, ‘Study of the enthalpies of formation in the Gd(Fe,Co,Pd,Pt) systems’, Met. Trans., 18A (1987) pp.903–907.Google Scholar
  43. 27b.
    C. Colinet, A. Pasturel and K.H.J. Buschow, ‘Short-Range order and stability in Gd-Ni and Y-Ni systems’, J. Applied. Phys., in press.Google Scholar
  44. 28.
    K.N. Semenenko, R.A. Sirotina and A.P. Savchenkova, ‘Thermochemical study of intermetallic compounds in the lanthanum-nickel system; Russ. J. Phys. Chem., 53 (1979) p.1356.Google Scholar
  45. 29.
    W.N. Hubbard, P.L. Rawlins, P.A. Connick, R.E. Stedwell and P.A.G. O’Hare, ‘The standard enthalpy of formation of LaNi. The enthalpies of hydriding of LaNi5-x Alx’, J. Chem. Thermodynamics, 15 (1983) pp.785–798.CrossRefGoogle Scholar
  46. 30.
    R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley and D.D. Wagman, Selected values of the thermodynamic properties of the elements, American Society for Metals, Metals Park, Ohio, (1973).Google Scholar
  47. 31.
    J.C. Mathieu, F. Durand and E. Bonnier, ‘Use of a vacuum calorimeter to measure the heats of dissolution of Ge, A1 and Ag in Sn at 700°C, Enthalpy measurements on Sn, ZrB2, TiB2 BN and B 4C’, Thermodynamics, Vol.I, International Atomic Energy Agency, Vienna, 1966.Google Scholar
  48. 32.
    E. Calvet and H. Prat, Microcalorimetrie, applications physicochimiques et biologiques, Masson, Paris 1956.Google Scholar
  49. 33.
    C. Colinet, A. Bessoud and A. Pasturel, ‘Thermodynamic investigation of (Ni, Pd, Pt)-(Al, In) alloys’, Z. Metallkde., 77 (1986) pp.798–804.Google Scholar
  50. 34.
    M. Jeymond, D. Landaud, M. Legardeur and A. Pasturel, ‘Microcomputer controlled experimentation in calorimetry. Application to the determination of the partial enthalpies of 3d transition metals in liquid aluminium’, Thermochim. Act. 55 (1982) pp.301–306.CrossRefGoogle Scholar
  51. 35.
    C. Chatillon-Colinet et J.C. Mathieu, ‘Mesures des enthalpies partielles des constituants d’une phase liquide et de l’enthalpie de formation d’une phase intermédiaire par calorimétrie de dissolution’, Rapport LTPCM (1979) TM-01, Saint Martin d’Hères France.Google Scholar
  52. 36.
    T.N. Rezukhina and S.V. Kutsev, ‘Thermodynamic properties of intermetallic compounds in tha La-Ni system’, Russ. J. Phys. Chem., 56 (1982) pp.1–6.Google Scholar
  53. 37.
    S.S. Paasch and H.J. Schaller, ‘Thermodynamic properties of Pd-X-alloys, with X=Gd,Y, Ce’, Ber. Bunsenges. Phys. Chem., 87 (1983) pp.812–814.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • C. Colinet
    • 1
  • A. Pasturel
    • 1
  1. 1.Laboratoire de Thermodynamique et Physico-Chimie MétallurgiquesENSEEGSaint Martin d’Hères CédexFrance

Personalised recommendations