Advertisement

Design and Operation of a Two-Stage Fogwater Collector

  • Dieter Schell
  • Hans-Walter Georgii

Abstract

A sampling device has been developed, which allows to separate the fog droplet spectrum into two size fractions. The first stage collects droplets down to a diameter of 4 μm using a string collector technique. The second stage with a calculated 50 % cut-off diameter of 2 μm was constructed under application of numerically developed and experimentally proven design criteria. Depending on the actual liquid water content, the collector has been operated with a time resolution of 60–120 minutes during several fog events under different conditions. The samples have been analyzed for pH and total conductivity as well as for the major ions by Ion Chromatography. Concentration values in smaller droplets were found to be up to 14 times higher than the corresponding concentrations in larger droplets.

Keywords

Small Droplet Large Droplet Liquid Water Content Cascade Impactor Impaction Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Däumer, B., R. Niessner, D. Klockow (1988) ‘Design and calibration of a low volume fog sampler’, J. Aerosol Sci., Vol. 19, No. 2, 175–181CrossRefGoogle Scholar
  2. Enderle, K.H., W. Jaeschke (1988) ‘Sammlung und chemische Analyse von Nebelwasser unter Berücksichtigung der Mikrophysik des Nebels’, Berichte des Zentrums für Umweltforschung der Johann Wolfgang Goethe Universität Frankfurt, No. 5Google Scholar
  3. Fuzzi, S. G. Orsi, G. Nardini, M.C. Facchini, S. McLaren, E. McLaren, M. Mariotti (1988) ‘Heterogeneous Processes in the Po Valley Radiation Fog’, J. Geophys. Res., Vol 93, No. D9, 11141–11151CrossRefGoogle Scholar
  4. Georgii, H.-W., S. Grosch, G. Schmitt (1987) ‘Schadstoffbelastung in Waldgebieten durch Deposition und Interception’, Forschungsbericht, Forschungsprojekt 104 02 635 im Auftrag des Umweltbundesamtes, Eigenverlag des Universitätsinstituts für Meteorologie und Geophysik, Frankfurt am MainGoogle Scholar
  5. Jacob, D.J., J.M. Waldman, M. Haghi, M.R. Hoffmann, R.C. Flagan (1985) ‘Instrument to collect fogwater for chemical analysis’, Rev. Sci. Instruments, 56, 1291–1293CrossRefGoogle Scholar
  6. Kroll, G., P. Winkler (1988) ‘Estimation of wet deposition via fog’, in K. Grefen and J. Löbel (eds.), Environmental Meteorology, Kluver Academic Publishers, 227–236Google Scholar
  7. Marple, V.A., K. Willeke (1976) ‘Impactor Design’, Atmospheric Environment Vol. 10, 891–896CrossRefGoogle Scholar
  8. Munger, J.W., D.J. Jacob, J.M. Waldman, M.R. Hoffmann (1983) ‘Fogwater Chemistry in an Urban Atmosphere’, J. Geophys. Res., 88, No. C9, 5109–5121CrossRefGoogle Scholar
  9. Schmitt, G. (1986) ‘The temporal distribution of trace element concentrations in fogwater during individual fog events’, in H.-W. Georgii (ed.), Atmospheric Pollutants in Forest Areas, D. Reidel Publishing Company, 129–141Google Scholar
  10. Winkler, P. (1986) ‘Observations on fogwater composition in Hamburg’, in H.-W. Georgii (ed.), Atmospheric Pollutants in Forest Areas, D. Reidel Publishing Company, 143–151Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Dieter Schell
    • 1
  • Hans-Walter Georgii
    • 1
  1. 1.Institute of Meteorology and GeophysicsUniversity of FrankfurtFrankfurt / MainFederal Republic of Germany

Personalised recommendations