The Deposition of Aerosol Particles in a Forest Using an Atmospheric Residence Time Model

  • R. Jaenicke


Usually forests are expected to act as a “filter” for aerosols. This term and the interpretation of earlier observations triggered the thoughts and calculations of this paper. The results indicate that the forest better should be termed “sink” rather then “filter”. The efficiency of a forest to remove particles from the air most probably is caused by the time the aerosol spends in the forest to settle and coagulate. The value of a forest for unpolluted air to the community stems from the fact that on the location of a forest, no polluter is existing. Based on a residence time model of the atmosphere, a model for the forest is developed and compared with published results.


Particle Concentration Aerosol Particle Collection Efficiency High Wind Velocity Tijdschrift Voor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Fuchs, N.A. (1964) The Mechanics of Aerosols, Pergamon Press, OxfordGoogle Scholar
  2. Höfken, K.D., Georgii, H.W., Gravenhorst, G. (1981) Untersuchungen über die Deposition atmosphärischer Spurenstoffe an Buchen- und Fichtenwald. Berichte des Instituts für Meteorologie und Geophysik der Universität Frankfurt/MainGoogle Scholar
  3. Jaenicke, R. and Blifford, I.H. (1974): The Influence of Aerosol Characteristics on the Calibration of Impactors. J. Atmospheric Science 5, 457–464Google Scholar
  4. Jaenicke, R. (1978) ‘Über die Dynamik atmosphärischer Aitkenteilchen’ Berichte Bunsenge-sellschaft Physikalische Chemie 82, 1198–1202Google Scholar
  5. Jaenicke, R. (1988) ‘Aerosol Physics and Chemistry’, in G. Fischer (ed.), Landolt-Börnstein New Series Volume 4 ‘Meteorology’ Subvolume b ‘Physical and Chemical Properties of the Air’, Springer Verlag Berlin, pp. 391–457Google Scholar
  6. Keller, T. and Flühler, H. (1978) ‘Die Bedeutung des Waldes als Immissionsfilter in der Industrielandschaft’, Mitteilungen Eidgenössische Anstalt fur das Forstliche Versuchswesen 54, 464–475Google Scholar
  7. Matthias, S. (1986) Die biogene Komponente im atmosphärischen Aerosol im Mainzer Raum. Diplomarbeit Universität MainzGoogle Scholar
  8. Mayer, H. (1984) Waldbau auf soziologisch-ökologischer Grundlage, Fischer Verlag, StuttgartGoogle Scholar
  9. Meister, G., Schütze, C., Sperber, G. (1984) Die Lage des Waldes, Verlag Gruner und Jahr, HamburgGoogle Scholar
  10. Prodi, F. and Tampieri, F. (1982) ‘The Removal of Particulate Matter From the Atmosphere: The Physical Mechanisms’, Pageoph 120, 286–325CrossRefGoogle Scholar
  11. Rahn, K.A. (1975) ‘Chemical Composition of the Atmospheric Aerosol: A Compilation I.’ Extern, Tijdschrift voor Omgevingswetenschappen 4, 286–313Google Scholar
  12. Rahn, K.A. (1975) ‘Chemical Composition of the Atmospheric Aerosol: A Compilation II.’ Extern, Tijdschrift voor Omgevingswetenschappen 4, 639–667Google Scholar
  13. Ranz, W.E. and Wong, J.B. (1952) ‘Impaction of Dust and Smoke Particles on Surface and Body Collectors’ Industrial and Engineering Chemistry 44, 1371–1381CrossRefGoogle Scholar
  14. Rötschke, M. (1937) ‘Untersuchungen über die Meteorologie der Staubatmosphäre’ Veröffenüichungen des Geophysikalischen Institutes Leipzig, 2. Serie 11, 1–78Google Scholar
  15. Zenker, H. (1954) ‘Waldeinfluβ auf Kondensationskeme und Lufthygiene’, Zeitschrift für Meteorologie 8, 150–159Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • R. Jaenicke
    • 1
  1. 1.Institute for MeteorologyUniversity of MainzMainzGermany

Personalised recommendations