Advertisement

Ocean Acoustic Tomography: A Primer

  • Robert A. Knox
Part of the NATO ASI Series book series (ASIC, volume 284)

Abstract

The purpose of this paper is to survey the ocean observing technique known as ocean acoustic tomography, the term ‘tomography’ having been chosen to highlight a functional analogy with computer-assisted tomography (CAT) in medicine. The method was proposed by Munk and Wunsch (1979), and its practitioners, results and ramifications have since proliferated; it seems certain to be an active means of obtaining large-scale information about ocean circulation for some time to come.

Keywords

Travel Time Internal Wave Sound Speed Sound Channel Sound Speed Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellman, R. (1960). Introduction to Matrix Analysis. McGraw-Hill, 328 pp.Google Scholar
  2. Boyles, C. A. (1984). Acoustic Waveguides. John Wiley and Sons, 322 pp.Google Scholar
  3. Brown, M. C. (1982). Application of the WKBJ Green’s function to acoustic propagation in horizontally stratified oceans. J. Acoust. Soc. Amer., 71, 1427–1432.CrossRefGoogle Scholar
  4. Clay, C. S. and H. Medwin (1977). Acoustical Oceanography. John Wiley and Sons, 544 pp.Google Scholar
  5. Cornuelle, B. D. (1983). Inverse methods and results from the 1981 ocean acoustic tomography experiment. Ph.D. thesis, Massachusetts Institute of Technology/Woods Hole Oceanographic Institution, 359 pp.Google Scholar
  6. Cornuelle, B. D., C. Wunsch, D. Behringer, T. Birdsall, M. Brown, R. Heinmiller, R. Knox, K. Metzger, W. Munk, J. Spiesberger, R. Spindel, D. Webb and P. Worcester (1985). Tomographic maps of the ocean mesoscale. Part 1: pure acoustics. J. Phys. Oceanogr., 15, 133–152.CrossRefGoogle Scholar
  7. Flatté, S. (Ed.), R. Dashen, W. Munk, K. Watson and F. Zachariasen (1979). Sound Transmission through a Fluctuating Ocean. Cambridge University Press, 299 pp.Google Scholar
  8. Howe, B. M. (1986). Ocean acoustic tomography: mesoscale velocity. Ph.D. thesis, Scripps Institution of Oceanography, UCSD, 59 pp.Google Scholar
  9. Howe, B. M., P. F. Worcester and R. C. Spindel (1987). Ocean acoustic tomography: mesoscale velocity. J. Geophys. Res., 92, 3785–3805.CrossRefGoogle Scholar
  10. Lanczos, C. (1961). Linear Differential Operators. Van Nostrand, 564 pp.Google Scholar
  11. Lindsay, R. B. (1960). Mechanical Radiation. McGraw-Hill, 415 pp.Google Scholar
  12. Metzger, K. (1983). Signal processing and techniques for use in measuring ocean acoustic multipath structures. Cooley Electronics Laboratory, Department of Electrical and Computer Engineering, University of Michigan, technical report 231, 316 pp.Google Scholar
  13. Munk, W. and C. Wunsch (1979). Ocean acoustic tomography: a scheme for large scale monitoring. Deep-Sea Res., 26A, 123–161.CrossRefGoogle Scholar
  14. Munk, W. and C. Wunsch (1982). Observing the ocean in the 1990s. Phil. Trans. R. Soc. Lond. A, 307, 439–464.CrossRefGoogle Scholar
  15. Munk, W. and C. Wunsch (1983). Ocean acoustic tomography: rays and modes. Revs. Geophys. Space Phys., 21, 777–793.CrossRefGoogle Scholar
  16. Ocean Tomography Group (1982). A demonstration of ocean acoustic tomography. Nature, 299, 121–125.CrossRefGoogle Scholar
  17. Romm, J. J. (1987). Applications of normal mode analysis to ocean acoustic tomography. Ph. D. thesis, Massachusetts Institute of Technology, 114 pp.Google Scholar
  18. Tolstoy, I. and C. S. Clay (1987). Ocean Acoustics. American Institute of Physics, for the Acoustical Society of America. 381 pp.Google Scholar
  19. Worcester, P. F. (1977). Reciprocal acoustic transmission in a midocean environment. J. Acoust. Soc. Amer., 62, 895–905.CrossRefGoogle Scholar
  20. Wunsch, C. (1987). Acoustic tomography by Hamiltonian methods including the adiabatic approximation. Revs. Geophys. Space Phys., 25, 41–53.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Robert A. Knox
    • 1
  1. 1.Scripps Institution of Oceanography A-030University of CaliforniaSan Diego, La JollaUSA

Personalised recommendations