Determining Diffusivities from Hydrographic Data by Inverse Methods with Applications to the Circumpolar Current

  • Dirk Olbers
  • Manfred Wenzel
Part of the NATO ASI Series book series (ASIC, volume 284)


Several inverse models have recently been put forward for obtaining estimates of the unknown reference velocities on the basis of the balances for momentum, vorticity, heat and salt of the large scale geostrophic circulation in the ocean. Notable forerunners are the inverse method proposed by Wunsch (1978) and the β-spiral method of Stommel and Schott (1977). These have first been applied in strictly adiabatic versions in the North Atlantic (see also Wunsch and Grant 1982, Schott and Stommel 1978). Both approaches can be extended to diabatic conditions. For the β-spiral model the consideration of the diffusion terms in the balances for tracers and vorticity are conceptionally simple (e.g. Olbers et al. 1985, Bigg 1985). Also Wunsch’s method has been generalized in this respect (see e.g. Wunsch 1984). We should also mention Hogg’s model (Hogg 1987) which is an inversion of the advective-diffusive balances on two isopycnals subject to the geostrophic constraint between the isopycnals. The model was applied in the central North Atlantic.


Southern Ocean Inverse Model Inverse Method Antarctic Circumpolar Current Reference Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bigg, G.R., 1985, ‘The beta spiral method’, Deep Sea Res., 32, 465–484CrossRefGoogle Scholar
  2. Cheney, R.E., Marsh, J.G. and B.D. Beckley, 1983, ‘Global mesoscale variability from collinear tracks of Seasat altimeter data’, J. Geophys. Res., 88, 4343–4354CrossRefGoogle Scholar
  3. Cox, M.D. and K. Bryan, 1984, ‘A numerical model of the ventilated thermocline’, J. Phys. Oceanogr., 14, 674–687CrossRefGoogle Scholar
  4. Daniault, N. and Y. Menard, 1985, ‘Eddy kinetic energy distribution in the Southern Ocean from altimetry and FGGE drifting buoys’, J. Geophys. Res., 90, 11877–11889CrossRefGoogle Scholar
  5. Gordon, A.L., Molinelli E. and T. Baker, 1978, ‘Large-Scale Relative Dynamic Topography of the Southern Ocean’, Journal of Geophysical Res., 83, 3023–3031CrossRefGoogle Scholar
  6. Gordon, A.L., Molinelli E. and T. Barker, 1982, ‘Southern Ocean atlas’, Columbia University Press.Google Scholar
  7. Gregg, M.C., 1987, ‘Diapycnal Mixing in the Thermocline: A Review’, J. Geophys. Res., 92, 5249–5286CrossRefGoogle Scholar
  8. Hellermann, S. and M. Rosenstein, 1983, ‘Normal monthly wind stress over the world ocean with error estimates’, J. Phys. Oceanogr., 13, 1093–1104CrossRefGoogle Scholar
  9. Hogg, N.G., 1987, ‘At least squares fit of advective-diffusive equations to Levitus Atlas data’, J. Mar.. Res., 45, 347–375CrossRefGoogle Scholar
  10. Holloway, G., 1989, ‘Parametrisation of small-scale processes’, this book Google Scholar
  11. Levitus, S., 1982, ‘Climatological atlas of the world ocean’, NOAA Tech. Pap., 3, 173Google Scholar
  12. McDougall, T.J., 1987, ‘Neutral Surfaces’, J. Phys. Oceanogr., 17, 1950–1963CrossRefGoogle Scholar
  13. McWilliams, J.C., Holland, W.R. and J.H.S. Chow, 1978, ‘A description of numerical Antarctic Circumpolar Currents’, Dyn. Atmos. Oceans, 2, 213–291CrossRefGoogle Scholar
  14. Montgomery, R.B., 1938, ‘Circulation in upper layers of southern North Atlantic deducted with use of isentropic analysis’, Pap. Phys. Oceanogr. Meteorol., 2, 55Google Scholar
  15. Müller, P., Olbers, D. and J. Willebrand, 1978, ‘The IWEX spectrum’, J. Geophys. Res., 83, 479–500CrossRefGoogle Scholar
  16. Munk, W.H., 1966, ‘Abyssal recipes’, Deep Sea Res., 13, 707–730Google Scholar
  17. Nowlin jr., W.D. and J.M. Klinck, 1986, ‘The Physics of the Antarctic Circumpolar Current’, Reviews of Geophysics, 24, 469–491CrossRefGoogle Scholar
  18. Olbers, D.J., Wenzel, M. and J. Willebrand, 1985, ‘The inference of North Atlantic circulation patterns from climatological hydrographic data’, Review of Geophysics, 23, 313–356CrossRefGoogle Scholar
  19. Olbers, D., 1989, ‘A geometrical interpretation of inverse problems’, this book Google Scholar
  20. Pedlosky, J., 1979, ‘Geophysical fluid dynamics’, Springer Verlag, 624pp.Google Scholar
  21. Schott, F. and H. Stommel, 1978, ‘Beta spirals and absolute velocities from different oceans’, Dep. Sea Res., 25, 961–1010CrossRefGoogle Scholar
  22. Solomon, H., 1971, ‘On the representation of isentropic mixing in ocean circulation models’, J. Phys. Oceogr., 1, 233–234CrossRefGoogle Scholar
  23. Stommel, H. and F. Schott, 1977, ‘The beta spiral and the determination of the absolute velocity field from hydrographic station data’, Deep Sea Res., 24, 325–329CrossRefGoogle Scholar
  24. Tarantola, A., 1986, ‘Inverse problem theory’, Elsevier, 335pp.Google Scholar
  25. Veronis, G., 1972, ‘On properties of seawater defined by temperature, salinity, and pressure’, J. Mar. Res., 30, 227–255Google Scholar
  26. Wenzel, M., 1986, ‘Die mittlere Zirkulation des Nordatlantik auf der Grundlage klimatologischer hydrographischer Daten’, Berichte Institut für Meereskunde Kiel, 157, 109ppGoogle Scholar
  27. Wolff, J.-O. and D.J. Olbers, 1988, ‘The Dynamical Balance of the Antarctic Circumpolar Current Studied with an Eddy Resolving Quasigeostrophic Model’, submitted for publication Google Scholar
  28. Wunsch, C., 1978, ‘The general circulation of the North Atlantic west of 50°W determined from inverse methods’, Rev. Geophys., 16, 583–620CrossRefGoogle Scholar
  29. Wunsch, C., 1984, ‘An eclectic Atlantic Ocean circulation model, I, The meridional flux of heat’, J. Phys. Oceanogr., 14, 1712–1733CrossRefGoogle Scholar
  30. Wunsch, C., 1989, ‘Tracer inverse problems’, this book Google Scholar
  31. Wunsch, C. and B. Grant, 1982, ‘Towards the general circulation of the North Atlantic Ocean’, Frog. Oceanogr., 11, 1–59CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Dirk Olbers
    • 1
  • Manfred Wenzel
    • 1
  1. 1.Alfred-Wegener-Institut für Polar- and MeeresforschungBremerhavenGermany

Personalised recommendations