On Oceanic Boundary Conditions for Tritium, on Tritiugenic 3He, and on the Tritium-3He Age Concept

  • Wolfgang Roether
Part of the NATO ASI Series book series (ASIC, volume 284)


Time dependence of tracer boundary conditions is a critical item in oceanic modelling of transient tracer data. For tritium, delivery to the ocean has occurred by flux imposed from the atmosphere, and both a flux and a concentration surface-ocean boundary condition can be formulated. Previous accounts of these are out lined, and ways to obtain boundary conditions needed in a given modelling context are suggested. 3He from tritium decay allows tritium-3He ‘dating’, and this approach largely circumvents the tracer boundary condition problem. However, the tritiugenic component of oceanic 3He is small, so that its separation from the natural 3He background can pose problems. The lowest achievable error in determining tritiugenic 3He is about ± 0.04 TR (one Sigma); this limit is related to availability of high-precision helium and neon data. The transport equation for tritium-3He age is explored and compared with that for regular transient tracers. A tendency of age distributions to develop towards stationarity is found. A case is made that tritium-3He age distributions are suitable for evaluation by inverse modelling. The case is discussed for tritium-3He age distributions in the lower main thermocline of the Northeast Atlantic, and aspects requiring further attention are noted.


Ocean Surface Potential Vorticity Inverse Modelling Solubility Equilibrium Vertical Advection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrie, C., P. Jean-Baptiste and L. Merlivat (1988). Tritium and helium-3 in the Northeastern Atlantic Ocean during the 1983 TOPOGULF cruise, J. Geophys. Res., in press.Google Scholar
  2. Benson, B. B., and D. Krause, Jr. (1980). Isotopic fractionation of helium during solution: a probe for the liquid state, J.Solution Chem., 9, 895–909.CrossRefGoogle Scholar
  3. Bolin, B. (1958). On the use of tritium as a tracer of water in nature, in: Proc. of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958, Paper A/Conf., 15/P/176, United Nations, New York, 1958, p. 336–343.Google Scholar
  4. Broecker, W. S., T. H. Peng, and G. Östlund (1986). The distribution of bomb tritium in the ocean, J.Geophys. Res., 91, 14331–14344.CrossRefGoogle Scholar
  5. Craig, H., and R. F. Weiss (1971). Dissolved gas saturation anomalies and excess helium in the ocean, Earth Planet. Sci. Lett., 10, 289–296.CrossRefGoogle Scholar
  6. Craig, H., and J. E. Lupton (1981). Helium-3 and mantle volatiles in the ocean and the oceanic crust, in: The Sea, Vol. 7: Oceanic Lithosphere, edit. C. Emiliani, Wiley and Sons, p. 391–428.Google Scholar
  7. Doney, S. C., and W. J. Jenkins (1988). The effect of boundary conditions on tracer estimates of thermocline ventilation rates, J. Mar. Res., submitted.Google Scholar
  8. Dreisigacker, E., and W. Roether (1978). Tritium and Sr-90 in North Atlantic surface water, Earth Planet. Sci. Lett., 38, 301–312.CrossRefGoogle Scholar
  9. Fine, R. A., and H. G. Östlund (1977). Source function for tritium transport models in the Pacific, Geophys. Res. Lett., 4, 461–464CrossRefGoogle Scholar
  10. Fuchs, G. (1987). Ventilation der Warmwassersphäre des Nordostatlantiks abgeleitet aus 3Helium- und Tritium-Verteilungen, Doct. Dissertation, Univ. of Heidelberg, 207 pp. and tables.Google Scholar
  11. Fuchs, G., W. Roether and P. Schlosser (1987). Excess 3He in the ocean surface layer, J. Geophys. Res., 92, 6559–6568.CrossRefGoogle Scholar
  12. GEOSECS (1987). GEOSECS Atlas of the Atlantic,Pacific, and Indian Ocean Expeditions 7: Shorebased Data and Graphics, Washington, U.S. Government Printing Office, 200 pp.Google Scholar
  13. Heinze, C., P. Schlosser, K. P. Koltermann and J. Meincke (1988). A tracer study of the deep water renewal in the European Polar Seas, Deep Sea Res., submitted.Google Scholar
  14. Jähne, B., G. Heinz and W. Dietrich (1987). Measurement of the diffusion coefficients of sparingly soluble gases, J. Geophys. Res., 92, 10767–10776.CrossRefGoogle Scholar
  15. Jenkins, W. J. (1987). 3H and 3He in the Beta triangle; observations of gyre ventilation and oxygen utilization rates, J. Phys.Oceanogr., 17, 763–783.CrossRefGoogle Scholar
  16. Jenkins, W. J. (1988). The use of anthropogenic tritium and helium-3 to study subtropical gyre ventilation and circulation, Phil. Trans. R. Soc. Lond., A, 325, 43–61.CrossRefGoogle Scholar
  17. Jenkins, W. J., and W. B. Clarke (1976). The distribution of 3He in the western Atlantic Ocean, Deep Sea Res., 23, 481–494.Google Scholar
  18. Koster, R., W. S. Broecker, J. Jouzel, R. Suozzo, G. Russell, D. Rind, and J. W. C. White (1988). The global geochemistry of bomb produced tritium; general circulation model compared to the real world, preprint.Google Scholar
  19. Kuntz, R. (1985). Bestimmung der Tiefenwasserzirkulation des Roten Meeres anhand einer Boxmodellauswertung von Tritium-3He- und Salinitätsdaten, Doct. Dissertation, Univ. of Heidelberg., 85 pp.Google Scholar
  20. Menke, W. (1983). Geophysical Data Analysis: Discrete Inverse Theory, Academic Press, 260 pp.Google Scholar
  21. Reid, J. L. (1978). On the middepth circulation and salinity field in the North Atlantic Ocean, J. Geophys. Res., 83, 5063–5067.CrossRefGoogle Scholar
  22. Reid, J. L. (1981). On the middepth circulation of the world ocean, in: Evolution of Physical Oceanography, ed. B. A. Warren and C. Wunsch, Cambridge, Mass., p. 70–111.Google Scholar
  23. Robinson, M. K., R. A. Bauer and E. H. Schroeder (1979). Atlas of North Atlantic-Indian Ocean Monthly Mean Temperature and Mean Salinities of the Surface Layer, U. S. Naval Oceanographic Office Ref. Pub. 18, Washington D. C.Google Scholar
  24. Roether, W. (1986). Field measurements of gas exchange, in: Dynamic Processes in the Chemistry of the Upper Ocean, ed. J. D. Burton, P. G. Brewer, R. Chesselet, Plenum Press, p. 117–128.Google Scholar
  25. Roether, W., K.-O. Münnich and H. G. Östlund (1970). Tritium profile at the North Pacific (1969) Geosecs intercalibration station, J. Geophys. Res., 75, 7672–7675.CrossRefGoogle Scholar
  26. Roether, W., and G. Fuchs (1988). Water mass transport and ventilation in the Northeast Atlantic derived from tracer data, Phil. Trans. R. Soc. Lond., A, 325, 63–69.CrossRefGoogle Scholar
  27. Roether, W., and M. Rhein (1988). Chemical tracers in the ocean, in Landolt-Börnstein, New Series, Group V, Vol. 3b, ed. J. Sündermann, Springer, Berlin-Heidelberg-NewYork-Tokyo, chapt. 4.3, in press.Google Scholar
  28. Sarmiento, J. L. (1983). A simulation of bomb tritium entry into the Atlantic Ocean, J. Phys. Oceanogr., 13, 1924–1939.CrossRefGoogle Scholar
  29. Sarmiento, J. L., C. G. H. Rooth and W. Roether (1982). The North Atlantic tritium distribution in 1972, J. Geophys. Res., 87, 8047–8056.CrossRefGoogle Scholar
  30. Saunders, P. M. (1982). Circulation in the eastern North Atlantic, J. Mar. Res., 40, Supplement, 641–657.Google Scholar
  31. Schlosser, P. (1985). Ozeanographische Anwendungen von Spurenstoffmessungen im Mittelmeerausstrom und im Europäischen Nordmeer, Doct. Diss., University of Heidelberg, 206 pp.Google Scholar
  32. Schlosser, P. (1986). Helium: a new tracer in Antarctic oceanography, Nature, 321, 233–235.CrossRefGoogle Scholar
  33. Taylor, C. B., and W. Roether (1982). A uniform scale for reporting low-level tritium measurements in water, Int. J. Appl. Radiat. Isotopes, 33, 377–382.CrossRefGoogle Scholar
  34. Thiele, G., W. Roether, P. Schlosser, R. Kuntz, G. Siedler and L. Stramma (1986). Baroclinic flow and transient-tracer fields in the Canary-Cape Verde Basin, J. Phys. Oceanogr., 16, 814–826.CrossRefGoogle Scholar
  35. Unterweger, M. P., B. M. Coursey, F. J. Schima, and W. B. Mann (1980). Preparation and calibration of the 1978 National Bureau of Standards tritiated-water standards, Int. J. Appl. Radiat. Isotopes, 31, 611–614.CrossRefGoogle Scholar
  36. Weiss, R. F. (1971). Solubility of helium and neon in water and seawater, J. Chem. Eng. Data, 16, 235–241.CrossRefGoogle Scholar
  37. Weiss, W., and W. Roether (1980). The rates of tritium input to the world oceans, Earth Planet. Sci. Lett., 49, 435–446.CrossRefGoogle Scholar
  38. Wunsch, C. (1987). Using transient tracers: the regularization problem, Tellus, 39 B, 477–492.Google Scholar
  39. Wunsch, C. (1988). Eclectic modelling of the North Atlantic. II. Transient tracers and the ventilation of the Eastern Basin thermocline, Phil. Trans. R. Soc. Loud., A, 325, 201–236.CrossRefGoogle Scholar
  40. Wunsch, C., and J.-F. Minster (1982). Methods for box models and ocean circulation tracers: Mathematical programming and nonlinear inverse theory, J. Geophys. Res., 87, 5747–5762.CrossRefGoogle Scholar
  41. Zenk, W. (1975). On the origin of the intermediate double-maxima in T/S profiles from the North Atlantic, ‘Meteor’ Forsch.-Ergebnisse, A, 16, 35–45.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Wolfgang Roether
    • 1
  1. 1.Universität BremenBremen 33Germany

Personalised recommendations