Advertisement

Introduction to Chemical Tracers of the Ocean Circulation

  • J.-F. Minster
Part of the NATO ASI Series book series (ASIC, volume 284)

Abstract

My task in this set of lectures was to provide some background information on chemical tracers of the ocean circulation. Thus, I present in a first section a dimensional analysis of the conservation equation for oxygen in the North Atlantic ocean. Section 2 gives an introduction to some of the most useful tracers, as well as of the species frequently measured: oxygen, nutrients and carbon species. Section 3 describes in more detail the processes at play at the air-sea interface and how they affect the tracer concentrations at the surface. Finally in section 4 two recent studies on how tracers constrain diapycnal mixing in the deep ocean are discussed.

Keywords

Input Function Ocean Circulation Deep Ocean North Atlantic Ocean Accelerator Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrie, C., C. Oudot, C. Genthon and L. Merlivat (1986): CO2 fluxes in the tropical atlantic during FOCAL cruises. J. Geophys. Res., 91, 11741–11755.CrossRefGoogle Scholar
  2. Armi, L. (1978): Some evidence for boundary mixing in the deep ocean. J. Geophys. Res., 83, 1971–1979.CrossRefGoogle Scholar
  3. Armi, L. (1979): Effects of variations in eddy diffusivity on property distributions in the ocean. J. Mar. Res., 37, 515–530.Google Scholar
  4. Armi, L. and H. Stommel (1983): Four views of a portion of the North Atlantic gyre. J. Phys. Oceanogr., 13, 828–857.CrossRefGoogle Scholar
  5. Bard, E., M. Arnold, G. Östlund, P. Maurice, P. Monfray and J.C. Duplessy (1988): Penetration of bomb radiocarbon in the tropical Indian ocean measured by means of accelerator mass spectrometry. Earth Planet. Sci. Lett., 87, 379–389.CrossRefGoogle Scholar
  6. Boulandid, M. and J.F. Minster (1988): Oxygen consumption and nutrient regeneration ratios along isopycnal horizons in the Pacific ocean. Marine Chem. (in press).Google Scholar
  7. Bradshaw, A.L. and P.G. Brewer (1988): High precision measurements of alkalinity and total carbon dioxide in seawater by potentiometric titration: presence of an unknown protolyte(s)? Marine Chem. (in press).Google Scholar
  8. Brewer, P.G., J.L. Sarmiento and W.M. Smethie (1985): The transient tracers in the ocean (TTO) program: The North atlantic study, 1981; The tropical Atlantic study, 1983. J. Geophys. Res., 90, 6903–6905.CrossRefGoogle Scholar
  9. Broecker, W.S. (1974): ‘NO’, a conservative water-mass tracer. Earth Planet. Sci. Lett., 23, 100–107.CrossRefGoogle Scholar
  10. Broecker, W.S. (1981): Geochemical tracers and ocean circulation. In: Evolution of physical Oceanography, B.A. Warren and C. Wunsch, eds, MIT press, Cambridge, 434–460.Google Scholar
  11. Broecker, W.S. (1986): The distribution of bomb tritium in the ocean J. Geophys. Res., 91, 14331–14344.CrossRefGoogle Scholar
  12. Broecker, W.S., R. Gerard, M. Ewing and B.C. Heezen (1960): Natural radiocarbon in the Atlantic Ocean. J. Geophys. Res., 65, 2903–2931.CrossRefGoogle Scholar
  13. Broecker, W.S., J.L. Ledwell, T. Takahashi, R. Weiss, L. Merlivat, L. Memery, T.H. Peng, B. Jähne and K.O. Munnich (1986): Isotopic versus micrometeorologic ocean CO2 fluxes: a serious conflict. J. Geophys. Res. 91, 10517–10527.CrossRefGoogle Scholar
  14. Broecker, W.S. and T.H. Peng (1982): Tracers in the sea. Eldigio Press, New York, pp. 690.Google Scholar
  15. Broecker, W.S., T.H. Peng, H.G. Östlund and M. Stuiver (1985): The distribution of bomb-radiocarbon in the ocean. J. Geophys. Res., 90, 6953–6970.CrossRefGoogle Scholar
  16. Craig, H. (1969): Abyssal carbon and radiocarbon in the Pacific. J. Geophys. Res., 74, 5491–5506.CrossRefGoogle Scholar
  17. Emerson, S. (1987): Seasonal oxygen cycle and biological new production in surface waters of the pacific ocean. J. Geophys. Res., 92, 6535–6544.CrossRefGoogle Scholar
  18. Erickson, D.J. and R.A. Duce (1987): On the global transfer velocity field of gases with a Schmidt number of 600. Searex Newslett., 10, 7–10.Google Scholar
  19. Etcheto, J. and Merlivat, L. (1988): Satellite determination of the carbon dioxide exchange coefficient at the ocean atmosphere interface. J. Geophys. Res., (in press).Google Scholar
  20. Fiadeiro, M.E. (1982): Three-dimensional modeling of tracers in the deep Pacific ocean II. Radiocarbon and the circulation. J. Marine Res., 40, 537–550.Google Scholar
  21. Garçon, V., L. Martinon, C. Andrie, P. Andrich and J.F. Minster (1988): Kinematics of CO2 fluxes in the tropical Atlantic ocean during the 1983 northern summer. J. Geophys. Res. (in press).Google Scholar
  22. Gargett, A.E. (1984): Vertical eddy diffusivity in the ocean interior. J. Marine Res., 42, 359–393.CrossRefGoogle Scholar
  23. Garrett, C. (1979): Mixing in the ocean interior. Dyn. Atmos. Oceans, 3, 239–265.CrossRefGoogle Scholar
  24. Goyet, C. (1987): Variations saisonnières de pCO2 dans les eaux de surface du Sud Ouest de l’Océan Indien. Thèse de Doctorat de l’Université Pierre et Marie Curie, Paris, France.Google Scholar
  25. Honjo, S., S.J. Manganini and J.J. Cole (1982): Sedimentation of biogenic matter in the deep ocean. Deep Sea Res., 29, 609–625.CrossRefGoogle Scholar
  26. Jenkins, W.J. (1981): Mass spectrometric measurement of tritium and 3Helium. Proceedings of consultation group on low level tritium measurement. IAEA, Vienna, 179–189.Google Scholar
  27. Jenkins, W.J. (1982): On the climate of a subtropical gyre: decade timescale variations in watermass renewal of the Sargasso sea. J. Mar. Res., 40, 265–290.Google Scholar
  28. Jenkins, W.J. (1987): 3H and 3He in the beta triangle: observations of gyre ventilation and oxygen utilization rates. J. Phys. Oceanogr., 17, 763–783.CrossRefGoogle Scholar
  29. Jenkins, W.J. (1988): The use of Anthropogenic tritium and helium-3 to study subtropical gyre ventilation and circulation. Phil. Trans. R.Soc. Lond., A 325, 43–61.CrossRefGoogle Scholar
  30. Jenkins, W.J., J.M. Edmond and J.B. Corliss (1978): Excess 3He and 4He in Galapagos submarine hydrothermal water. Nature, 272, 156–158.CrossRefGoogle Scholar
  31. Kawase, M. and J.L. Sarmiento (1985): Nutrients in the Atlantic thermocline. J. Geophys. Res., 90, 8961–8979.CrossRefGoogle Scholar
  32. Ledwell J.R., A.J. Watson and W.S. Broecker (1986): A deliberate tracer experiment in Santa Monica basin. Nature, 323, 322–324.CrossRefGoogle Scholar
  33. Liss, P.S. and L. Merlivat (1986): Air-sea gas exchange rates: introduction and synthesis. In: The Role of Air-Sea Exchange in Geochemical Cycling, P. Buat-Menard, ed. NATO A.S.I. series, 185, 113–128.Google Scholar
  34. Lupton, J.E. and H. Craig (1981): A major helium-3 source at 15°N on the east Pacific rise. Science, 214, 13–18.CrossRefGoogle Scholar
  35. Maier-Reimer, E. and K. Hasselmann (1987): Transport and storage of CO2 in the ocean — An inorganic ocean circulation carbon cycle model. Climate Dynamics, 2, 63–90.CrossRefGoogle Scholar
  36. McDougall, T.J. (1987): Neutral surfaces in the ocean: implications for modelling. Geophys. Res. Lett., 14, 797–800.CrossRefGoogle Scholar
  37. Minster, J.F. (1985): The two degree discontinuity as explained by boundary mixing. J. Geophys. Res., 90, 8953–8960.CrossRefGoogle Scholar
  38. Minster, J.F. and M. Boulandid (1987): Redfield ratios along isopycnal surfaces. A complementary study. Deep Sea Res., 34, 1981–2003.CrossRefGoogle Scholar
  39. Moore W.S., R.M. Key and J.L. Sarmiento (1985): Techniques for precise mapping of 226Ra and 228Ra in the ocean. J. Geophys. Res., 90, 6983–6994.CrossRefGoogle Scholar
  40. Munk, W.H. (1966): Abyssal recipes. Deep Sea Res. 13, 707–730.Google Scholar
  41. Musgrave, D.L., J. Chou and W.J. Jenkins (1988): Application of a model of upper-ocean physics for studying seasonal cycles of oxygen. J. Geophys. Res. (in press).Google Scholar
  42. Osborn, T. and C. Cox (1972): Oceanic fine structure. Geophys. Fluid Dyn., 3, 321–345.CrossRefGoogle Scholar
  43. Redfield, A.C., B.H. Ketchum and F.A. Richards (1963): The influence of organisms on the composition of sea water. In: The Sea, vol 2, M.N. Hill ed., Interscience, New-York, 26–77.Google Scholar
  44. Rintoul, S.R. (1988): Mass, Heat and nutrient fluxes in the Atlantic ocean determined by inverse methods. PhD thesis, MIT/WHOI.Google Scholar
  45. Sarmiento, J.L. (1983): A simulation of bomb tritium entry into the Atlantic ocean. J. Geophys. Res., 13, 1924–1939.Google Scholar
  46. Sarmiento, J.L., H.W. Feely, W.S. Moore, A.E. Bainbridge and W.S. Broecker (1976): The relationship between eddy diffusion and buoyancy gradient in the deep sea. Earth Planet. Sci. Lett., 32, 357–370.CrossRefGoogle Scholar
  47. Sarmiento, J.L., J.R. Toggweiler and R. Najjar (1988): Ocean carbon-cycle dynamics and atmospheric pCO2. Phil. Trans. R. Soc. Lond., A 325, 3–21.CrossRefGoogle Scholar
  48. Schlitzer R., W. Roether, U. Weidmann, P. Kalt and H. Loosli (1985): A meridional 14c and 39Ar section in Northeast Atlantic deep water. J. Geophys. Res., 90, 6945–6952.CrossRefGoogle Scholar
  49. Smethie, W.M. and G. Mathieu (1986): Measurement of krypton-85 in the ocean. Marine Chem., 18, 17–33.CrossRefGoogle Scholar
  50. Smethie, W.M., H.G. Östlund and H.H. Loosli (1986): Ventilation of the deep Greenland and Norwegian seas: evidence from krypton-85, tritium, carbon-14 and argon-39. Deep-sea Res., 33, 675–703.CrossRefGoogle Scholar
  51. Spitzer, W.S. and W.J. Jenkins (1988): Rates of vertical mixing, gas exchange, and new production: estimates from seasonal gas cycles in the upper ocean near Bermuda. J. Marine Res. (submitted).Google Scholar
  52. Stuiver M., P.D. Quay and H.G. Östlund (1983): Abyssal water carbon-14 distribution and the age of the world oceans. Science, 219, 849–851.CrossRefGoogle Scholar
  53. Suess, H.E. (1955): Radiocarbon concentration in modern wood. Science, 122, 415–417.CrossRefGoogle Scholar
  54. Sugimura, Y. and Y. Suzuki (1988): A high temperature catalytic oxidation method of non volatile dissolved organic carbon in sea water by direct injection of a liquid sample (preprint).Google Scholar
  55. Suzuki, Y., Y. Sugimura and T. Itoh (1985): A catalytic oxidation method for the determination of total nitrogen dissolved in sea water. Marine Chem., 16, 83–92.CrossRefGoogle Scholar
  56. Takahashi, T., W.S. Broecker and S. Langer (1985): Redfield ratios based on chemical data from isopycnal surfaces. J. Geophys. Res., 90, 6907–6924.CrossRefGoogle Scholar
  57. Takahashi, T., J. Goddard, S. Sutherland, D.W. Chipman and C.C. Breeze (1986): Seasonal and geographic variability of carbon dioxide sink/source in the oceanic areas: observations in the North and equatorial Pacific ocean, 1984–1986 and global summary. Final report to the CO2 research division. Office of Energy Research, USA, pp. 52.Google Scholar
  58. Thomas, F., C. Perigaud, L. Merlivat and J.F. Minster (1988): World-scale mapping of the CO2 ocean-atmosphere gas-transfer coefficient. Phil. Trans. R. Soc. Lond., A 325, 71–83.CrossRefGoogle Scholar
  59. Thomas, F., V. Garcon and J.F. Minster (1989): Modeling the seasonal cycle of dissolved oxygen in the upper ocean at station P. Deep Sea Res. (in press);Google Scholar
  60. Toggweiler, J.R., K. Dixon and K. Bryan (1988a): Simulations of radiocarbon in a coarse resolution, world ocean model I: Steady-state, pre-bomb distribution. J. Geophys. Res. (submitted);Google Scholar
  61. Toggweiler, J.R., K. Dixon and K. Bryan (1988b): Simulations of radiocarbon in a coarse resolution world ocean model II: distribution of bomb-produced 14C. J. Geophys. Res. (submitted).Google Scholar
  62. Warren, B.A. (1981): Deep circulation of the world ocean. In: Evolution of Physical Oceanography, B.A. Warren and C. Wunsch, eds, MIT press, Cambridge, 6–41.Google Scholar
  63. Watson, A.J. and J.R. Ledwell (1988): Purposeful released tracers. Phil. Trans. R. Soc. Lond., A 325, 189–200.CrossRefGoogle Scholar
  64. Weiss, R.F., J.L. Bullister, R.H. Gammon and M.J. Warner (1985): atmospheric chlorofluoromethanes in the deep equatorial Atlantic. Nature, 314, 608–610.CrossRefGoogle Scholar
  65. Weiss, W. and W. Roether (1980): The rates of tritium input to the world oceans. Earth Planet. Sci. Lett., 49, 435–446.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • J.-F. Minster
    • 1
  1. 1.UM39/GRGSToulouse CedexFrance

Personalised recommendations