Early and recent intraluminal ultrasound devices

  • N. Bom
  • H. ten Hoff
  • C. T. Lancée
  • W. J. Gussenhoven
  • J. G. Bosch


The history of intraluminal echography dates back to the very beginning of diagnostic ultrasound. Over the years many fascinating ideas and applications of catheter tip or gastroscopic tube tip mounted transducers have been described. This chapter surveys these methods, subdividing them into a) measurements; b) Doppler and c) imaging. The survey ranges from early work of Cieszynski on the feasibility of echocardiography to more recent intra-arterial catheter tip Doppler with guidewire and balloon as described by Serruys.

Examples of ultrasound catheter tip echography in combination with other techniques such as angioscopy, laser ablation and spark erosion are also described. Today practical approaches are limited to imaging only. The three major approaches for catheter tip echo imaging are described and compared. This paper concludes with the results of automatic contour analysis of the inner arterial boundaries.


Blood Velocity Beam Deflection Diagnostic Ultrasound Acoustic Beam Flexible Shaft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cieszynski T. Intracardiac method for the investigation of structure of the heart with the aid of ultrasonics. Arch Immun Ter Dow 1960; 8: 551–7.Google Scholar
  2. 2.
    Kossoff G. Diagnostic applications of ultrasound in cardiology. Australas Radiol 1966; X: 101–6.CrossRefGoogle Scholar
  3. 3.
    Peronneau P. Catheter with piezoelectric transducer. U.S. Patent No. 3, 542, 014, 1970.Google Scholar
  4. 4.
    Carleton RA, Sessions RW, Graettinger JS. Diameter of heart measured by intracavitary ultrasound. Med Res Engng 1969; May/June: 28–32.Google Scholar
  5. 5.
    Stegall HF, Pratt JR, Moser PF. Carotid mechanics in situ. Fed Proc 1969; 28: 585.Google Scholar
  6. 6.
    Kardon MB, O’Rourke RA, Bishop VS. Measurement of left ventricular internal diameter by catheterization. J Appl Physiol 1971; 31: 613–5.PubMedGoogle Scholar
  7. 7.
    Olson RM, Cooke JP. A nondestructive ultrasonic technique to measure diameter and blood flow in arteries. IEEE Trans Biomed Engng 1974; March: 168–71.Google Scholar
  8. 8.
    Frazin L, Talano JV, Stephanides L, Loeb HS, Kopel L, Gunnar RM. Esophageal echocardiography. Circulation 1976; 54: 102–8.PubMedGoogle Scholar
  9. 9.
    Hughes DJ, Geddes LA, Bourland JD, Babbs CF. Dynamic imaging of the aorta in-vivo with 10 MHz ultrasound. In: Metherell AF, ed. Acoustical imaging 8. New York and London: Plenum Press, 1980: 699–707.Google Scholar
  10. 10.
    Stegall HF, Stone HL, Bishop VS, Laenger C. A catheter-tip pressure and velocity sensor. Proc 20th Ann Conf Eng Med Biol 1967; 27: 4 (abstract).Google Scholar
  11. 11.
    Reid JM, Davis DL, Ricketts HJ, Spencer MP. A new Doppler flowmeter system and its operation with catheter mounted transducers. In: Reneman RS, ed. Cardiovascular applications of ultrasound. Amsterdam/London: North-Holland Publishing Co, 1974: 183–92.Google Scholar
  12. 12.
    Hartley CJ, Cole JS. A single-crystal ultrasonic catheter-tip velocity probe. Med Instrum 1974; 8: 241–3.PubMedGoogle Scholar
  13. 13.
    Sibley DH, Millar HD, Hartley CJ, Whitlow PL. Subselective measurement of coronary blood flow velocity using a steerable Doppler catheter. J Am Coll Cardiol 1986; 8: 1332–40.PubMedCrossRefGoogle Scholar
  14. 14.
    Gichard FD, Auth DC. Development of a mechanically scanned Doppler blood flow catheter. IEEE Ultrasonics Symp Proc 1975: 306–9.Google Scholar
  15. 15.
    Martin RW, Pollack GH, Phillips J. An ultrasonic catheter tip instrument for measuring volume blood flow. IEEE Ultrasonics Symp Proc 1975: 301–5.Google Scholar
  16. 16.
    Wild JJ, Reid JM. Ultrasonic rectal endoscope for tumor location. Am Inst Ultrasonics Med 1955; 4: 59.Google Scholar
  17. 17.
    Omoto R. Intracardiac scanning of the heart with the aid of ultrasonic intravenous probe. Jap Heart J 8: 569–81.CrossRefGoogle Scholar
  18. 18.
    Ebina T, Oka S, Tanaka M, Kosaka S, Kikuchi Y, Uchida R, Hagiwara Y. The diagnostic application of ultrasound to the disease in mediastinal organs. Ultrasono-tomography for the heart and great vessels. Sci Rep Res Inst Tohoku Univ 1965; 12:199–212.Google Scholar
  19. 19.
    Eggleton RC, Townsend C, Kossoff G, Herrick J, Hunt R, Templeton G, Mitchell JH. Computerised ultrasonic visualization of dynamic ventricular configurations. 8th ICMBE, Palmer House, Chicago IL, July 1969, Session 10–3.Google Scholar
  20. 20.
    Bom N, Lancée CT, Van Egmond FC. An ultrasonic intracardiac scanner. Ultrasonics 1972; 10: 72–6, and US-patent No. 1,402,192, filed February 22, 1973.PubMedCrossRefGoogle Scholar
  21. 21.
    Hisanaga K, Hisanaga A, Nagata K, Yoshida S. A new transesophageal real-time two-dimensional echocardiographic system using a flexible tube and its clinical application. Proc Jap Soc Ultrasonics Med 1977; 32: 43–4.Google Scholar
  22. 22.
    DiMagno EP, Regan PT, Wilson DA, Buxton JL, Hattery RR, Suarez JR, Green PS. Ultrasonic endoscope. Lancet, March, 1980: 629–31.Google Scholar
  23. 23.
    Bertini A, Masotti L, Zuppiroli A, Cecchi F. Rotating probe for trans-oesophageal cross-sectional echocardiography. J Nucl Med Allied Sci 1984; 28: 115–21.PubMedGoogle Scholar
  24. 24.
    Souquet J, Hanrath P, Zitelli L, Kremer P, Langenstein BA, Schlüter M. Transesophageal phased array for imaging the heart. IEEE Trans Biomed Engng 1982; BME-29: 707–12.Google Scholar
  25. 25.
    Natori H, Tamaki S, Izumi S, Joshita Y, Kira S. Clinical application of ultrasound endoscope using linear array transducer for transesophageal ultrasonography of the disease of the mediastinum. In: Lerski A, Morley P, eds. Ultrasound ’82, Oxford: Pergamon Press, 1983: 339–43.Google Scholar
  26. 26.
    Fukuda M. Endoscopic ultrasonography. In: Gill RW, Dadd MJ, eds. WFUMB ’85, Sydney/Oxford/New York/ Toronto/Frankfurt: Pergamon Press, 1985: 13–6.Google Scholar
  27. 27.
    Nakada A, Matsuo K. An ultrasonic probe for diagnostic examination of the interior body cavities. European patent No. 0 088 620, 1983.Google Scholar
  28. 28.
    Webster WW. Catheter for removing arteriosclerotic plaque. International patent PCT/US84/00474, 1984.Google Scholar
  29. 29.
    Yock PG. Catheter apparatus. European patent No. 0234951, 1987.Google Scholar
  30. 30.
    Slager CJ, Essed CE, Schuurbiers JCH, Bom N, Serruys PW, Meester GT. Vaporization of atherosclerotic plaques by spark erosion. J Am Coll Cardiol 1985; 5: 1382–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Serruys PW, Jullière Y, Zijlstra F, Beatt KJ, De Feyter PJ, Suryapranata H, Van den Brand M, Roelandt J. Coronary blood flow velocity during percutaneous transluminal coronary angioplasty as guide for assessment of the functional result. Am J Cardiol 1988; 61: 253–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Bosch JG, Reiber JHC, Van Burken G, Gerbrands JJ, Gussenhoven WJ, Bom N, Roelandt JRTC. Automated endocardial contour detection in short-axis 2-D echocardiograms: methodology and assessment of variability, Proc 15th Int Conf Comp Cardiol 1989 (in press).Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • N. Bom
    • 1
    • 2
  • H. ten Hoff
    • 1
  • C. T. Lancée
    • 1
  • W. J. Gussenhoven
    • 2
  • J. G. Bosch
    • 1
  1. 1.Thoraxcentre, Erasmus University RotterdamRotterdamThe Netherlands
  2. 2.Inter university Cardiology Institute of the NetherlandsRotterdamThe Netherlands

Personalised recommendations