MHD-Flows at High Rm, N and Ha

  • I. V. Lavrent’ev
Part of the Mechanics of Fluids and Transport Processes book series (MFTP, volume 10)


On the basis of MHD flow in a rectangular cross-section channel the influence of N. Ha and Rm, conductivities of the walls and channel geometry on the flow character has been analysed. A transition to the Stokes flow has been considered. An analogy has been traced between the electrodynamic processes at high values of Ha and Rm.


Rectangular Channel Hartmann Number Magnetic Reynolds Number Nonuniform Magnetic Field Transverse Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lavrent’ev I.V., 1978, “On averaging the electromagnetic field equations in MHD devices with finite magnetic Reynolds number”, Magnitnaya Gidrodynamika, N 3. 92.Google Scholar
  2. [2]
    Lavrent’ev I.V., Shishko A.Ya.. 1980, “Electrodynamic processes in MHD channels at high magnetic Reynolds number”, Magnitnaya Gidrodynamika, N 3. 81.Google Scholar
  3. [3]
    Glukhikh V.A., Tananaev A.V., Kirillov I.R., 1987. Magnetohydrodynamics in Nuclear Energetics Power. M., Energoatomizdat.Google Scholar
  4. [4]
    Smith D.L. et al., 1985. “Overview of the blanket comparison and selection study”. Fusion Technol. (USA), 8, 1(1), 10.Google Scholar
  5. [5]
    Baker C.C. et al. 1985. “Tokamak power system studies — FY 1985”. Argone National Laboratory Report, ANL/FPP-85–2.Google Scholar
  6. [6]
    Muravjev E.V., Orlov V.V., Khripunov V.I., 1985, “Liquid-metal cooling of hybrid tokamak-reactor. Problems of atomic science and engineering”. Thermonuclear Fusion, Issue 4. 24.Google Scholar
  7. [7]
    Lavrent’ev I.V., 1987. “Liquid-metal blanket of fusion tokamak-reactor”, Theses of Rep. of 4-th All-Union Conference on Engineering Problems of Fusion Reactors. Leningrad, January. 1988. M.. 326.Google Scholar
  8. [8]
    Gelfgat Yu.M., Lielausis O.A., Shcherbinin E.V., 1976, “Liquid metal under electromagnetic forces”. Riga. 247.Google Scholar
  9. [9]
    Walker J.S., 1981, “Magnetohydrodynamic flows in rectangular ducts with thin conducting walls”, Part 1, Methan, Vol. 20, N 1. 70.Google Scholar
  10. [10]
    Lavrent’ev I.V., Sidorenkov S.I., Shishko A.Ya., Developed flow in slotted channel in coplanar magnetic field, Magnitnaya Gidrodynamike (to be published).Google Scholar
  11. [11]
    Lavrent’ev I.V., Sidorenkov S.I.. 1986, “Influence of MHD channel wall friction on flow at finite Rm”,Magnitnaya Gidrodynamika, N 4, 121.Google Scholar
  12. [12]
    Lavrent’ev I.V., Serebrjakov V.V., “On transition to Stokes flow in MHD channels’, Magnitnaya Gidrodinamika (to be published).Google Scholar
  13. [13]
    Lavrent’ev I.V., Molokov S.Yu., Serebrjakov V.V., Shishko A.Ya.. “Stocks flow in rectangular channel with insulating walls in nonuniform magnetic field“, Magnitnaya Gidrodinamika (to be published).Google Scholar
  14. [14]
    Lavrent’ev I.V.. Molokov S.Yu., Serebrjakov V.Y., Shishko A.Ya. “Influence of wall electric conductance on stocks flow in rectangular channels”. Magnitnaya Gidrodinamika (to be published).Google Scholar
  15. [15]
    Walker J.S.. 1986. “Liquid metal flow in a rectangular duct with a nonuniform magnetic field”, J. of Theoretical and Applied Mechanics. Vol. 5. N 6. 827.zbMATHGoogle Scholar
  16. [16]
    Kalyutik A.I., Lavrent’ev I.V.. Serebrjakov V.V., 1987. “Numerical study of flow in circular MHD channel”. 12-th Riga Conference. Vol.1, Salaspils, 171.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • I. V. Lavrent’ev
    • 1
  1. 1.Efremow Institute of Electrophysical ApparatusLeningradUSSR

Personalised recommendations