The Mineral Dust Record in a High Altitude Alpine Glacier (Colle Gnifetti, Swiss Alps)

  • Dietmar Wagenbach
  • Klaus Geis
Part of the NATO ASI Series book series (ASIC, volume 282)


Ice-core and snow-pit samples from a non-temperated glacier in the summit range of Monte Rosa, Swiss Alps (4450 m.a.s.l.) has been analyzed for total mineral dust and the size distribution of insoluble particulate matter in the size range 0.63–20 microns. Based on a 50 years-record Saharan dust accounts for two third of the mean mineral dust flux of 60 μgcm-2yr-1. Both, background and Saharan dust influenced samples show a distinct mode in the volume size distribution of insoluble particles over the optical active size range with a typical volume mean diameter of 2.5 and 4.5 μm, respectively. These two size distribution categories are attributed to the insoluble fraction of the long lived background aerosol and to the relatively short lived aerosol dominated by soil derived dust (i.e. ground-level aerosol in aride areas).


Mineral Dust Saharan Dust Insoluble Particle Volume Size Distribution Total Particle Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitchinson, J. and Brown, J.A. (1957): The log normal distribution with special reference to uses in economics Cambridge University Press, Monograph: 5.Google Scholar
  2. Alean, J., Haeberli, W. and Schaedler, B. (1984): ‘Snow accumulation, firn temperature and solar radiation in the area of the Colle Gnifetti core drilling site (Monte Rosa, Swiss Alps): distribution patterns and interrelationships’, Zeitschrift für Gletscherkunde und Glazialgeologie 19, 2, p. 131–147.Google Scholar
  3. Boutron, C. (1978): ‘Influence des aérosols naturels et anthropogénic sur la géochemie des neiges polaires’, Thesis, University of Grenoble, Grenoble France.Google Scholar
  4. Bücher, A. (1986): ‘Recherches sur les poussièrs minérales d’origine saharienne’, Thesis, University of Reims-Champagne-Ardenne France.Google Scholar
  5. Dörr, H., Kromer, B., Levin, I., Münnich, K.O. and Volpp, H.J. (1983): ‘CO and Radon 222 as tracers for atmospheric transport’, J. Geophys. Res. 88, No. C2, p. 1309–1313.CrossRefGoogle Scholar
  6. Gäggeler, H., von Gunten, H.R., Rössler, E., Oeschger, H. and Schotterer, U. (1983): ‘210Pb-dating of cold alpine firn/ice cores from Colle Gnifetti, Switzerland’, J. of Glaciology 29, 101, p. 165–177.Google Scholar
  7. Geis, K. (1988): Master Thesis, Institut für Umweltphysik, University of Heidelberg, FRG.Google Scholar
  8. Glawion, H., (1938): ‘Eine ungewöhnliche Periode von Staubfällen im Mai 1937’, Zeitschrift für angewandte Meteorologie 54, Heft 9, p.284–289.Google Scholar
  9. Haeberli, W. (1978): ‘Sahara dust on the Alps-a short review’, Zeitschrift für Gletcherkunde und Glazialgeologie, 13,1–2, p. 206–208. [Appendix to Oeschger and others (1978)].Google Scholar
  10. Haeberli, W., Schotterer, U., Wagenbach, D., Haeberli-Schwitter, H. and Bortenschlager, S. (1983): ‘Accumulation characteristics on a cold, high-Alpine firn saddle from a snow-pit study on Colle Gnifetti, Monte Rosa, Swiss Alps’, J. of Glaciology 29, 102, p. 260–271.Google Scholar
  11. Haeberli, W., and Alean, J. (1985): ‘Temperature and accumulation of high altitude firn in the Alps’, Annals of Glaciology 6, p. 161–163.Google Scholar
  12. Haeberli, W., and Alean, J. (1985): ‘Temperature and accumulation of high altitude firn in the Alps’, Annals of Glaciology 6, p. 161–163.Google Scholar
  13. Holdsworth, G., Krouse H. R. and Peake E. (1988): ‘Trace-acid ion content at shallow snow and ice-cores from mountain sites in Western Canada’, Annals of Glaciology 10, p. 57–62.Google Scholar
  14. Jaenicke, R. and Davis, C.N. (1976): ‘The mathematical expression of the size distribution of atmospheric aerosols’, Journal Aerosol Science 7, p. 255–259.CrossRefGoogle Scholar
  15. Jaenicke, R. and Schütz L. (1988): ‘Wind speed and vertical flux of aerosols’, in Fischer, G. (Ed.): Meteorology: Physical and Chemical Properties of Air, Landolt-Boernstein, New Series, Group V, Volume 4b., Springer-Verlag, p. 403–404.Google Scholar
  16. Koerner, R.M. (1977): ‘Distribution of microparticles in a 299-m core through the Devon Island ice cap, Northwest Territories, Canada’ In: Isotopes and Impurities in Snow and Ice, JAHS Publ. No. 118, p. 371–376.Google Scholar
  17. Langway, C.C., Oeschger, H. and Dansgaard, W. (Editors) (1985): Greenland Ice Core: Geophysics, Geochemistry and the Environment, Washington D.C.; AGU Monograph 33.Google Scholar
  18. Loye-Pilot, M.D., Martin, J.M. and Morelli, J. (1986): ‘Influence of Saharan dust on the rain acidity and atmospheric input to the Mediterranian’, Nature 321, p. 427–428.CrossRefGoogle Scholar
  19. Mason, B. (1966): Principles of Geochemistry, third edition, Wiley and Sons, Inc.,New York.Google Scholar
  20. Oeschger, H., Schotterer, U., Stauffer, B., Haeberli, W. and Röthlisberger, H. (1978): ‘First results from Alpine core drilling projects’, Zeitschrift für Gletscherkunde and Glazialgeologie 13, 1/2, p. 193–208.Google Scholar
  21. Patterson, E.M. and Gilette, D.A. (1977): ‘Commonalities in measured size distributions for aerosols having a soil-derived component’, J. of Geophys. Res. 82, p. 2074–2082.CrossRefGoogle Scholar
  22. Petit, J.R., Briat, M. and Royer, A. (1981): ‘Ice age aerosol content from East Antarctic ice core samples and past wind strength’, Nature 293, p. 391–394.CrossRefGoogle Scholar
  23. Prodi, F., Fea, G. (1978): ‘Transport and deposition of Saharan dust over Alps’, 15. Internationale Tagung für alpine Meteorologie, Grindelwald, 19.-23. Sept., Tagungsbericht.Google Scholar
  24. Rosinski J. and Langer G. (1974): ‘Extraneous Particles shed from large Soil Particles’. Aerosol Science 5, p. 373–378.CrossRefGoogle Scholar
  25. Royer, A., De Angelis, M. and Petit, J.R. (1983): ‘A 30000 year record of physical and optical properties of microparticles from an east Antarctic ice core and implications for paleoclimate reconstruction models’, Climatic Change 5, p. 381–412.Google Scholar
  26. Schotterer, U., Haeberli, W., Good, W., Oeschger, H. and Röthlisberger, H. (1981): ‘Datierung von kaltem Firn und Eis in einem Bohrkern vom Colle Gnifetti, Monte Rosa’, Jahrbuch der Schweizerischen Naturforschenden Gesellschaft, wissenschaftlicher Teil, p. 48–57.Google Scholar
  27. Schotterer, U., Oeschger, H., Wagenbach, D. and Münnich, K.O. (1985): ‘Information on paleo-precipitation on a high-altitude glacier, Monte Rosa, Switzerland’, Zeitschrift far Gletscherkunde und Glazialgeologie 21, p. 379–388.Google Scholar
  28. Schütz, L. (1979): ‘Saharan Dust transport over the North Altantic Ocean-model calculations and measurements’, in C. Morales, ed.: Saharan Dust, mobilization, transport, deposition. SCOPE 14, J.Wiley and Sons, New York, p. 267–277.Google Scholar
  29. Steffenson, J.P. (1985): ‘Microparticles in snow from the South Greenland ice sheet’, Tellus 37B, p. 286–295.Google Scholar
  30. Thompson, L.G. and Mosley-Thompson, E. (1982): ‘Spatial distribution of microparticles within Antarctic snow-fall’, Annals of Glaciology 3, p. 300–305.Google Scholar
  31. Thompson, L.G., Mosley-Thompson, E., Grootes, P.M., Pourchet, M. and Hastenrath, S. (1984): ‘Tropical glaciers: Potential for ice core paleoclimatic reconstructions’, J. Geophys. Res. 89, p. 4638–4646.CrossRefGoogle Scholar
  32. Thompson, L.G., Mosley-Thompson, E., Bolzon, J.F. and Koci, B.R. (1985): ‘A 1500-year record of tropical precipitation in ice cores from the Quelccaya Ice Cap, Peru’, Science 229, p. 971–973.CrossRefGoogle Scholar
  33. Thompson, L.G., Xiaoling, W., Mosley-Thompson, E. and Zichu, X. (1988): ‘Climatic records from the Dunde Ice Cap, China’, Annals of Glaciology 10, p. 80–84.Google Scholar
  34. Tomadin, L., Lenaz, R., Landuzzi, V., Mazzucotelli, A. and Vannucci, R. (1984): ‘Windblown dust over the Central Mediterranean’, Oceanologica Acta 7, 1, p. 13–22.Google Scholar
  35. Valentin, J. (1902): ‘Der Staubfall vom 9. bis 12. März 1901’, Sitzungsbericht der Kaiserlichen Akademie der Wissenschaften in Wien, Mathematische-naturwissenschaftliche Classe CX 1, Abt. IIa, Mai 1902, p. 50.Google Scholar
  36. Wagenbach, D. (1981): ‘Pilotstudie zur Aerosoldeposition auf einer hochalpinen kalten Firndecke’, Ph. D. Thesis, University of Heidelberg, Heidelberg FRG.Google Scholar
  37. Wagenbach, D., Görlach, U., Haffa, K., Junghans, H.G., Münnich, K.O. and Schotterer, U. (1985): ‘A long term aerosol deposition record on a high altitude Alpine glacier’, WMO Technical Conference on Observations and Measurements of Atmospheric Contaminants (TECOMAT), Vienna 1983, WMO Report No. 647.Google Scholar
  38. Wagenbach, D., Münnich, K.O., Schotterer, U. and Oeschger, H. (1988): ‘The anthropogenic impact on snow chemistry at Colle Gnifetti, Swiss Alps’, Annals of Glaciology 10, Symposium on Ice Core Analysis, Bern 1987, p. 183–187.Google Scholar
  39. Wagenbach, D. (1988): ‘Records in alpine glaciers’, in Oeschger, H. and Langway, C.C., eds.: The environmental record in Glaciers and Ice Sheets. Dahlem Konferenzen. Chichester: J. Wiley and Sons, in press.Google Scholar
  40. Weiss, W., Stockburger, K., Sartorius, H., Münnich, K.O., Keller, M., Bühler, Th. and Platt, U. (1985): ‘Atmospheric aerosol and radioactivity parameters at the Schauinsland Mountain Top observatory’, WMO Technical Conference on Observations and Measurement of Atmospheric Contaminants (TECOMAC), Vienna, WMO Report No. 647.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Dietmar Wagenbach
    • 1
  • Klaus Geis
    • 1
  1. 1.Institut für UmweltphysikUniversität HeidelbergHeidelbergGermany

Personalised recommendations