Advertisement

Rock-fluid interaction: interpretation by zeta potential and complex resistivity measurements

  • G. Nover
  • G. Will
Part of the NATO ASI Series book series (ASIC, volume 281)

Abstract

The petrophysical parameters porosity, permeability, compressibility, thermal expansion and zeta potential were determined for selected core samples from the Falkenberg granite massif in north-eastern Bavaria, FRG. This rock status determination forms the basis for the interpretation of the complex electrical resistivity measurements as a function of frequency (.0001 Hz up to 100 kHz). The measurements were performed on cylindrical core samples. In situ conditions were obtained in an autoclave, with pressures from 10 bar up to 150 bar at room temperature. Solutions of NaCl and KCl with different molarity, and distilled water were used as pore fillings. The observed shift in the relaxation time was attributed to different polarization processes whose existence depends on saturant type and concentration.

Keywords

Double Layer Zeta Potential Core Sample Induce Polarization Polarization Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed S, and Maksimov D (1969) Studies of the double layer on cassiterite and rutile. J Coll Interf Sci 29, 1: 97–104CrossRefGoogle Scholar
  2. Anorgan Y and Madden TR (1977) Induced polarization: a preliminary study of its chemical basis. Geophysics 42, 4: 788–803CrossRefGoogle Scholar
  3. Armstrong RD and Firman RE (1973) Impedance plane display of the adatom model for metal dissolution/deposition. Electronanal Chem Interf Electrochem 45: 257–266CrossRefGoogle Scholar
  4. Becker R, Lentz H, Hinze E, Nover G and Will G (1986) Ein Quecksilberporosimeter zur Charakterisierung mineralischer Stoffe. Berichte der Bunsenges Phys Chem 90: 833–838.Google Scholar
  5. Brauer E und Piroth J (1986) Impedanzspektroskopie in der Elektrochemie. GIT Fachz Lab 6: 533–543Google Scholar
  6. Cammann K (1973) Das Arbeiten mit ionenselektiven Elektroden. Springer, Berlin Heidelberg New YorkGoogle Scholar
  7. Chapman DL (1913) Philas Mag 25 6: 475Google Scholar
  8. Cole KS and Cole R (1941) Dispersion and absorption in dielectrics. J Chem Phys V9: 341–351CrossRefGoogle Scholar
  9. Davies JT and Rideal EK (1961) Interfacial phenomena. Academic Press New York London 56–107Google Scholar
  10. Debeye P and Hückel E (1923) Phys Z 24: 185Google Scholar
  11. Delahay P (1965) Evolution of ideas on the electrical double layer. Double layer and electrokinetics. John Wiley & Sons, New YorkGoogle Scholar
  12. Duba Ali Huenges E, Nover G and Will G (1988) Impedance of Black Shale from Münsterland 1 Borehole: An Anomalously Good Conductor? Geophys J 94 413–419CrossRefGoogle Scholar
  13. Fuller BE and Ward SH (1970) Linear System Description of the Electrical Parameters of Rocks. IEEE Transact on Geosci Elect GE-8 1: 7–13CrossRefGoogle Scholar
  14. Gouy G (1910) J Phys 9 9: 457Google Scholar
  15. Grahame DC (1952) Mathematical theory of the faradaic admittance. J electrochem Soc 99: 370–385CrossRefGoogle Scholar
  16. Hasted JB (1973) Water- a comprehensive treatise. Plenum New York vol. 1: pp. 255–458; vol 2: pp 405–458.Google Scholar
  17. Helmholtz H (1879) Wied Ann 7: 337Google Scholar
  18. Hills GJ (ed) (1970) Electrochemistry. Chem Soc, Burlington House London, pp 117–167CrossRefGoogle Scholar
  19. Huenges E (1988) Messung der Permeabilität von niedrigpermeablen Gesteinsproben unter Drücken bis 4 kbar und ihre Beziehung zu Kompressibilität porösitat und elektrischem Widerstand. PhD Thesis Univ BonnGoogle Scholar
  20. Jonscher AK (1978) Analysis of the alternating current properties of ionic conductors. J Math Sci 13: 553–562CrossRefGoogle Scholar
  21. Keller GV and Frischknecht FC (1966) Electrical methods in geophysical prospecting. Pergamon, New YorkGoogle Scholar
  22. Mansfeld F (1981) Recording and analysis of AC impedance data for corrosion studies. Corrosion 36, 5: 301–308CrossRefGoogle Scholar
  23. Mason PR, Hasted JB and Moore L (1974) The use of statistical theorey in fitting equations to dielectric dispersion data. Advanc molec relax proc 6: 217–232CrossRefGoogle Scholar
  24. Mc Cafferty E and,Zettelmoyer AC (1971) Adsorption of Water Vapor on a-Fe2O3. Disc Faraday Soc 52: 239CrossRefGoogle Scholar
  25. Mund K (1986) Untersuchung poröser Elektrodenstrukturen mit Impedanzmessungen. Dechema Monographien 102 Grundlagen von Elektrodenreaktionen VCH VerlagsgesellschaftGoogle Scholar
  26. Ney P (1973) Zeta Potentiale. Springer Berlin Heidelberg New YorkGoogle Scholar
  27. Nover G, Hinze E and Will G (1984) Elektrische Leitfähigkeitsmessungen an Gesteinen in Abhängigkeit von Druck, Temperatur und Gesteinsstatus. Forschungsbericht T84–279, Fachinformationszentrum, KarlsruheGoogle Scholar
  28. Nover G, Huenges E and Will G (1987) Messung der Frequenzabhängigkeit elektrischer Gesteinswiderstände unter in situ Bedingungen. Abschlußbericht zum Forschungsvorhaben 03E-6187-A, BMFTGoogle Scholar
  29. Olhoeft GR (1986) Electrical properties of rocks and minerals. Short Course Notes, Golden ColoradoGoogle Scholar
  30. Rummel F (1979) Experimente an einem künstlich erzeugten Riß im flachen, niedrig permeablen Untergrund als Grundlage zur großtechnischen Gewinnung terrestrischer Wärme. RUB BMFT-ET Vorhaben 4150/CEC-Projekt E 8(D)Google Scholar
  31. Schmickler W (1986) Die Doppelschicht in wässriger und nicht wässriger Lösung. In: Dechema Monographien 102 Grundlagen von Elektrodenreaktionen, VCH Verlagsgesellschaft Schön J (1983) Petrophysik. Enke, StuttgartGoogle Scholar
  32. Schultze JW (ed.) (1980) Grundlagen von Elektrodenreaktionen. Vol 102 Verlag Chemie, WeinheimGoogle Scholar
  33. Sheppard R J and Grant E H (1974) Alternative interpretations of dielectric measurements with particular reference to polar liquids. Advances in Molecular Relaxation Processes 6 61–67CrossRefGoogle Scholar
  34. Stern O (1924) Zur Theorie der elektrolytischen Doppelschicht. Z Elektrochemie 30 508Google Scholar
  35. Washburn J C (1982) Parameterization of spectral induced polarization data and Laboratory and in situ spectral induced polarization measurements: West Shasta copper-zinc district, Shasta, CA. Thesis, Colorado School of Mines, Golden ColeradoGoogle Scholar
  36. Will G and Nover G (1986) Measurment of the frequency dependence of the electrical conductivity and some other petro-physical parameters of core samples from the Konzen (West Germany) drill hole. Annales geophysicae 4 B2 173–182Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • G. Nover
    • 1
  • G. Will
    • 1
  1. 1.Lehrstuhl für Kristallographie, Poppelsdorfer SchloßMineralogisches Institut der Universität BonnBonn 1West Germany

Personalised recommendations