Photoacoustic Investigation of Pesticides

  • Dane Bicanic
  • Henk Jalink
  • Hans Sauren
  • Frans Harren
  • Jörg Reuss
  • Ben Zuidberg
  • Ernst Woltering


The photoacoustic effect caused by the absorption of the modulated radiation thereby leading to the generation of sound in the gas at the very same chopping frequency, has emerged as a valuable tool for a variety of applications. This is described in several excellent books and review articles on this topic [1,2,3,4,5]. The magnitude of the photoacoustic signal is directly proportional to the amount of the power absorbed by the gas and the concentration of the absorbing species. Throughout recent years frequent studies of atmospheric pollution using the photoacoustic effect in molecular gases in the infrared have been carried out with laser sources [6,7,8,9,10,11]. For a majority of gases, sub part per billion detection sensitivity limits for concentration have been reached with optimized cell designs under realistic atmospheric conditions.


Swiss Federal Institute Photoacoustic Signal Photoacoustic Cell Photoacoustic Effect Tube Resonator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Vargas, H. and Miranda, L.C.M. Photoacoustic and related photothermal techniques. Phys. Rep.l 161, 43–101 (1988).CrossRefGoogle Scholar
  2. (2).
    Hess, P. and Pelzl, J. (Eds.)Photoacoustic and Photothermal Phenomena Springer Series in Optical Sciences, Vol. 58, Springer Verlag Heidelberg (1988).Google Scholar
  3. (3).
    Zharov, V.P. andLethokov, V.S., Laser Optoacoustic Spectroscopy. Springer Series in Optical Sciences Vol. 37, Springer Verlag Heidelberg (1986).Google Scholar
  4. (4).
    Tam, A.C., Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58, 381–431 (1986)CrossRefGoogle Scholar
  5. Roth, R. et al., On the photoacoustic measurement of ammonia in the atmosphere. Proc. 4th Int. Conf. Infrared Phys. Zurich 593–595 (1988)Google Scholar
  6. (5).
    Sigrist, M.W., Laser generation of acoustic waves in liquids and gases. Jour, of App. Phys. 60, R83–R121 (1986).CrossRefGoogle Scholar
  7. (6).
    Meyer, P.L., Air pollution monitoring with a mobile CO2 laser photoacoustic system. PhD. Thesis no. 8651. Swiss Federal Institute of Technology (ETH) Zurich Switzerland (1988).Google Scholar
  8. (7).
    Bernegger, S., CO2 laser photoacoustic spectroscopy of gases and vapors for trace gas analysis. PhD Thesis no. 8636. Swiss Federal Institute of Technology (ETH) Zurich Switzerland (1988).Google Scholar
  9. (8).
    Harren, F., The photoacoustic effect, refined and applied to biological problems. Ph.D. Thesis, Faculty of Sciences, Catholic University, Nijmegen, the Netherlands (1988).Google Scholar
  10. (9).
    Hundelbrink, W., Die photoakustische infrarot laserspektroskopie zur schadgasanalyse. PhD Thesis. Institut fur Thermodynamik und Thermische Verfahrenstechnik der Universität Stuttgart West Germany (1986).Google Scholar
  11. (10).
    Artemov, V.M. et al., Photoacoustic investigation of ammonia produced by fertilized fields (in Russian). Trudi ordena Trudovogo Krasnogo Znameni Instituta Prikladnoi Geofiziki imeni akademika E.K. Fedorova, Vol. 67: Distancione sredstva i metodi izmerenia zagrzenii atmosferi i vibrosov. V.I. Rozdestvenskoi (Ed.), Hidrometeoizdata, Moscow 106–114 (1986).Google Scholar
  12. (11).
    Loper, G.L. et al., FY 1984, Progress toward development of a breadbord CO2 laser photoacoustic toxic monitor. Aerospace report no. ATR-85(7039)-l, The Aerospace Corporation, El Segundo, California (1985).Google Scholar
  13. (12).
    Dorofeev, V.S. et al., Laser optoacoustic detector for measuring the herbicides with gas chromatography (in Russian). Agrohimija 8, 116–121 (1984).Google Scholar
  14. (13).
    Kritchman, E. et al., Resonant optoacoustic cells for trace gas analysis. Jour. Opt. Soc. Amer. 68, 1257–1271 (1977).CrossRefGoogle Scholar
  15. (14).
    Bernegger, P., Swiss Federal Institute of Technology, Institute of Quantum Electronics, ETH, Zurich Switzerland. Priv. Communication (1987).Google Scholar
  16. (15).
    Woltering, E. et al., Laser photoacoustics: novel method for ethylene determination in plant physiological studies. To appear in Acta Hort. (1989).Google Scholar
  17. (16).
    Bernegger, P., et al., Longitudinal Resonant spectrophone for CO laser spectroscopy. Appl. Phys. B44, 125–133 (1988).Google Scholar
  18. (17).
    Miklos, A. and Lorincz, A.Windowless resonant acoustic chamber for laser photoacoustic applications.Submitted for publication in Appl. Phys. B (1988).Google Scholar
  19. (18).
    Worthing, C.R. (Ed.), The Pesticide Manual - A worldwide Compendium. Sixth edition, British Crop Protection Council. The Lavenham Press Ltd., Lavenham Suffolk (1979).Google Scholar
  20. (19).
    Andersson, P. and Persson, U., Absorption coefficients at CO2 laser wavelengths for toluene, m-xylene, o-xylene and p-xylene. Appl. Opt. 23, 192–193 (1984).CrossRefGoogle Scholar
  21. (20).
    Persson, U. et al., Temperature and pressure dependence of NH3 and C2H4 absorption of cross sections at CO2 laser wavelengths. Appl. Opt. 19, 1711–1715 (1980).CrossRefGoogle Scholar
  22. (21).
    Jalink, H. Agricultural University Wageningen, The Netherlands, Dept. of Physics and Meteorology. To be published (1989).Google Scholar
  23. (22).
    Bicanic, D.D. et al., The use of reverse mirage spectroscopy to determine the absorption coefficients of liquid methanol at C02 laser wavelengths.To appear in Appl. Spectr. 43, no. 1 (1989).Google Scholar

Copyright information

© ECSC, EEC, EAEC, Brussels and Luxembourg 1989

Authors and Affiliations

  • Dane Bicanic
    • 1
  • Henk Jalink
    • 1
  • Hans Sauren
    • 1
  • Frans Harren
    • 2
  • Jörg Reuss
    • 2
  • Ben Zuidberg
    • 3
  • Ernst Woltering
    • 4
  1. 1.Photoacoustic Laboratory Dept. of Physics and MeteorologyWageningen Agricultural UniversityWageningenThe Netherlands
  2. 2.Dept. of Laser and Molecular PhysicsCatholic UniversityNijmegenThe Netherlands
  3. 3.Dept. of PhysicsGadjad Mada UniversityYogjakartaIndonesia
  4. 4.Sprenger InstituteWageningenThe Netherlands

Personalised recommendations