Application of Tunable Diode Lasers to Laboratory Studies of Atmospheric Chemistry: Kinetics of the Reaction NO3+NO2→NO+NO2+O2

  • J. Hjorth
  • F. Cappellani
  • C. Nielsen
  • G. Restelli
Conference paper


The use of a tunable diode laser spectrometer operated in second harmonic detection mode, in conjunction with a Fourier transform spectrometer, has allowed to obtain the rate constant kD of the reaction (D)NO3+NO2→NO+NO2+O2 as a function of the rate constant kC of the reaction (C) NO3+NO→2NO2. Using literature data of the kDxk±B product where k±B is the equilibrium constant for the reactions (+B, −B), NO3+NO2=M⇄N2O5+M, a value for k has also been determined. The value derived for kD using for kc (3±0.9)× 10−11 cm3 molec−1 s−1 results equal to (5.13±1.80)×l0−16 cm3 molec−1 s−1 and that for k±B equal to (2. 5′6±0.89)×1010 molec cm−3, both at 296 K. Advantages and limitations of the use of the TDL spectrometer in this study are discussed.


Laser Emission Line Strength Tunable Diode Laser Steady State Situation Heterogeneous Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    See e.g. Streit, G.E., Wells, J.S., Fehsenfeld, F.C. and Howard, C.J. (1979). A tunable diode laser study of the reaction of nitric and nitrous acids: HNO3+N0 and HNO2+O3. J. Chem. Phys. 70, 3439–3443.CrossRefGoogle Scholar
  2. (2).
    Cox, R.A. and Jenkin, M.E. (1985). Kinetic studies of HO2 reactions using diode laser spectroscopy. Presented at the COST-611 Workshop, Cologne, 12–13 November.Google Scholar
  3. (3).
    Finlayson-Pitts, B.J. and Pitts, J.N. Jr. (1986) in Atmospheric Chemistry. Published by J. Wiley & Sons, p. 529.Google Scholar
  4. (4).
    Johnston, H.S., Cantrell, C.A. and Calvert, J.G. (1986). Unimolecular decomposition of NO3 to form NO and O2 and a review of the N2O5/NO3 kinetics. J. Geophys. Res. 91, 5159–5172.CrossRefGoogle Scholar
  5. (5).
    Schott, G. and Davidson, N. (1958). Shock waves in chemical kinetics: the decomposition of N2O5 at high temperatures. J. Am. Chem. Soc. 80, 1841–1853.CrossRefGoogle Scholar
  6. (6).
    Graham, R.A. and Johnston, H.S. (1978). The photochemistry of NO3 and the kinetics of the N2O5–O3 system. J. Phys. Chem. 82, 254–268.CrossRefGoogle Scholar
  7. (7).
    Johnston, H.S. and Tao, Y.S. (1951). Thermal decomposition of nitrogen pentoxide at high temperatures, J. Am. Chem. Soc. 73, 2948–2949.Google Scholar
  8. (8).
    Daniels, F. and Johnston, E.H. (1921). The termal decomposition of nitrogen pentoxide: A monomolecular reaction, J. Am. Chem. Soc. 43, 53–71.CrossRefGoogle Scholar
  9. (9).
    Cantrell, C.A., Davidson, J.A., MC Daniel, A.H., Shetter, R.E. and Calvert, J.G. (1988). The equilibrium constant for N2O5⇄NO3 +NO2: Absolute determination by direct measurement from 243 to 397 K. J. Chem. Phip. 88, 4997–5006.CrossRefGoogle Scholar
  10. (10).
    Chance, E.M., Curtis, A.R., Jones, I.P. and Kirby, C.R. (1977). AERE-report, Harwell, U.K.Google Scholar
  11. (11).
    Reid, J., Schewchun, J., Garside, B.K. and Ballik, E.A. (1978). High sensitivity pollution detection employing tunable diode lasers. Appl. Opt. 17, 300–307.CrossRefGoogle Scholar
  12. (12).
    Cappellani, F., Melandrone, G. and Restelli, G. (1987) in Monitoring of Gaseous Pollutants by Tunable Diode Lasers. R. Grisar, H. Preier, G. Schmidtke and G. Restelli Eds. published by Reidel Publishing Co., pp. 51–60.Google Scholar
  13. (13).
    Rothman, L.S. et al. (1987). The HITRAN data base. Appl. Opt. 26, 4058–4097.CrossRefGoogle Scholar
  14. (14).
    Hjorth, J., Cappellani, F., Ottobrini, G. and Restelli, G. (1987). A Fourier transform infrared study of the rate constant of the homogeneous gas phase reaction N2O5 +H2O and determination of absolute infrared band intensities of N2O5 and HNO3. J. Phys. Chem. 91, 1565–1568.CrossRefGoogle Scholar
  15. (15).
    Demore, al. (1987). Chemical kinetics and photochemical data for use in stratospheric modelling. JPL-Publication 87–8.Google Scholar
  16. (16).
    Tuazon, E.C., Sanhueza, E., Atkinson, R., Carter, W.P.L., Winer, A.M. and Pitts, J.N. Jr. (1984). Direct determination of the equilibrium constant at 298 K for the NO3 +NO2⇄N2O5 reactions. J. Phys. Chem. 88, 3095–3099.CrossRefGoogle Scholar
  17. (17).
    Kircher, C.C., Margitan, J.J. and Sander, S.P. (1984). Pressure and temperature dependence of the reactions NO3+NO2+M→N2O5+M. J. Phys. Chem. 88, 4370–4374.CrossRefGoogle Scholar
  18. (18).
    Malko, M.W. and Troe, J. (1982). Analysis of the unimolecular reaction N2O5+M→NO3+NO2+M. Int. J. Chem. Kinetics 14, 399–405.CrossRefGoogle Scholar
  19. (19).
    Svensson, R. and Ljungstroem, E. (1988). A kinetic study of the decomposition of HNO3 and its reaction with NO. Int. J. Chem. Kinetics, in press.Google Scholar

Copyright information

© ECSC, EEC, EAEC, Brussels and Luxembourg 1989

Authors and Affiliations

  • J. Hjorth
    • 1
  • F. Cappellani
    • 1
  • C. Nielsen
    • 1
  • G. Restelli
    • 1
  1. 1.Commision of the European CommunitiesJoint Research Center- Ispra EstablishmentIspra (Va)Italy

Personalised recommendations