Advertisement

Applications to Stellar and Galactic Dynamics

  • R. H. Miller
Conference paper

Abstract

Computation and a wealth of new observational techniques have reinvigorated dynamical studies of galaxies and star clusters. These objects are examples of the gravitational n-body problem with n in the range from a few hundred to 1011. Relaxation effects dominate at the low end and are completely negligible at the high end. The gravitational n-body problem is chaotic, and the principal challenge in doing physics where that problem is involved (whether computationally or with analytic theory) is to ensure that chaos has not vitiated the results. Enforcing a Liouville theorem accomplishes this with collision-free large-n problems, but equivalent recipes are not in common use for smaller n. We describe some important insights and discoveries that have come from computation in stellar dynamics, discuss chaos briefly, and indicate the way the physics that comes up in different astronomical contexts is addressed in numerical methods currently in use. Graphics is a vital part of any computational approach. The long range prospects are very promising for continued high scientific productivity in stellar dynamics.

Keywords

Chaotic System Star Cluster Close Encounter Disk Galaxy Liouville Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarseth, S. J. 1985. in Multiple Time Scales, Ed. J.O. Brackbill and B.I. Cohen ( New York: Academic Press ) pp. 377–418.Google Scholar
  2. Appel, A. W. 1985. SIAM J.Sci.…Stat.Comput., 6, 85.MathSciNetCrossRefGoogle Scholar
  3. Deprit, A. 1969. Celestial Mechanics, 1, 12.MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. Eckert, W. J., Brouwer, D., and Clemence, G. M. 1951. Astronomical Papers Prepared for the Use of the American Ephemeris and Nautical Almanac, Vol. XII, ( Washington D.C.: U. S. Government Printing Office ).Google Scholar
  5. Greengard, L. F. 1988. The Rapid Evaluation of Potential Fields in Particle Systems, (Cambridge, MA: The MIT Press).zbMATHGoogle Scholar
  6. Holmberg, E. 1941. Astrophys.J. 94, 385.ADSCrossRefGoogle Scholar
  7. Hut, P., and McMillan, S. L. W. 1986. The Use of Supercomputers in Stellar Dynamics, Proceedings, Princeton USA 1986, ( New York: Springer-Verlag ).CrossRefGoogle Scholar
  8. Lindblad, P. O. 1960. Stockholms Obs.Ann 21, No. 4.Google Scholar
  9. Marciniak, A. 1985. Numerical Solutions of the N-Body Problem, (Boston: Reidel )zbMATHGoogle Scholar
  10. McMillan, S. L. W., and Lightman, A. P. 1984. Astrophys.J. 283, 801, Fiche 95-F3.ADSCrossRefGoogle Scholar
  11. Miller, R. H. 1985. Celestial Mechanics 37, 307.ADSCrossRefGoogle Scholar
  12. Miller, R. H. 1988, “Stellar Dynamics,” in Numerical Methods in Astrophysics, ed. P. R. Woodward, (Boston: Academic Press) to be published.Google Scholar
  13. Pasta, J., and Ulam, S. M. 1953. “Heuristic Studies in Problems of Mathematical Physics on High Speed Computing Machines.” Los Alamos Report LA-1557.Google Scholar
  14. Sellwood, J. A. 1987. Ann.Rev.Astron.…Astrophys., 25, 151.ADSCrossRefGoogle Scholar
  15. Shapiro, S. L., and Teukolsky, S. A. 1985. Astrophys.J. 298, 58, Fiche 113-E8.ADSCrossRefGoogle Scholar
  16. Toomre, A., and Toomre, J. 1972. Astrophys.J. 178, 623.ADSCrossRefGoogle Scholar
  17. von Hoerner, S. 1960. Zeitschr.für Astrophys. 50, 184.ADSzbMATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • R. H. Miller
    • 1
  1. 1.Department of Astronomy and AstrophysicsUniversity of ChicagoChicagoUSA

Personalised recommendations