On Quantifying the Distinctions Between the Cusp and the CLEFT/LLBL

  • Patrick T. Newell
  • Ching-I. Meng
Part of the NATO ASI Series book series (ASIC, volume 278)


The distinction between the cusp (the region of fairly direct entry of magnetosheath plasma to low altitudes) and the cleft (the ionospheric signature of the magnetospheric boundary layer) is placed on a firm quantitative foundation. Case examples illustrating the difference are shown; when both regions are seen on a given pass the cusp lies poleward of the cleft, generally with a sharp boundary between the regions. The statistical differences are developed, for example the ion number flux in the cusp is approximately 4 times higher than in the cleft. The different responses of the cusp and the cleft to the interplanetary magnetic field Bz are documented; the cusp (cleft) ion fluxes increase (stay nearly unchanged) and the statistical local time width increases (decreases) when Bz changes from northward to southward. A brief review of the various previous attempts at distinctions between the cusp and the cleft is given, as is a brief summary of all known differences between the two regions as observed at low altitude.


Boundary Layer Average Energy Interplanetary Magnetic Field Electron Precipitation Electron Average Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burch, J. L. (1973) ‘Rate of erosion of dayside magnetic flux based on a quantitative study of the dependence of polar cusp latitude on the interplanetary magnetic field’, Radio Science, 8, 955–961.ADSCrossRefGoogle Scholar
  2. Candidi, M., and Meng, C.-I. (1984) ‘The relation of the cusp precipitating electron flux to the solar wind and the interplanetary magnetic field’, J. Geophys. Res., 89, 9741–9751.ADSCrossRefGoogle Scholar
  3. Carbary, J. F., and Meng, C.-I. (1986a) ‘Relations between the interplanetary magnetic field Bz, AE index, and cusp latitude’, J. Geophys. Res., 91, 1549–1556.ADSCrossRefGoogle Scholar
  4. Carbary, J. F., and Meng, C.-I. (1986b) ‘Correlation of cusp latitude with Bz and AE(12) using nearly one year’s data’, J. Geophys. Res., 91, 10047–10054.ADSCrossRefGoogle Scholar
  5. Eastman, T. E., Popielawska, B., and Frank, L. A. (1985) ‘Three-dimensional plasma observations near the outer magnetosphere boundary’, J. Geophys. Res., 90, 9519–9539.ADSCrossRefGoogle Scholar
  6. Eather, R. H. (1985) ‘Polar cusp dynamics’, J. Geophys. Res., 90, 1569–1576.ADSCrossRefGoogle Scholar
  7. Formisano, V. (1980) ‘HEOS 2 observations of the boundary layer from the magnetopause to the ionosphere’, Planet. Space Sci., 28, 245–257.ADSCrossRefGoogle Scholar
  8. Gussenhoven, M. S., Hardy, D. A., and Carovillano, R. L. (1985) ‘Average electron precipitation in the polar cusps, cleft, and cap’, in The Polar Cusp, J. A. Holtet and A. Egeland (Eds), pp. 85–97, D. Reidel, Hingham, Mass.Google Scholar
  9. Hardy, D. A., Schmitt, L. K., Gussenhoven, M. S., Marshall, F. J., Yeh, H. C., Shumaker, T. L., Hube, A., and Pantazis, J. (1984) ‘Precipitating electron and ion detectors (SSJ/4) for the block 5D/flights 6–10 DMSP satellites: Calibration and data presentation’, Rep. AFGL-TR-84-0317, Air Force Geophys. Lab., Hanscom Air Force Base, Mass.Google Scholar
  10. Haerendel, G., Paschmann, G., Sckopke, N., Rosenbauer, H., and Hedgecock, P. C. (1978) ‘The Frontside boundary layer of the magnetosphere and the problem of reconnection’, J. Geophys. Res., 83, 3195–3216.ADSCrossRefGoogle Scholar
  11. Heikkila, W. J., and Winningham, J. D. (1971) ‘Penetration of magnetosheath plasma to low altitudes through the dayside magnetospheric cusps’, J. Geophys. Res., 76, 883–891.ADSCrossRefGoogle Scholar
  12. Heikkila, W. J. (1972) ‘The morphology of auroral particle precipitation’, in Space Research 12, 1343–1355, Akademie-Verlag.Google Scholar
  13. Heikkila, W. J. (1985) ‘Definition of the cusp’, in The Polar Cusp, J. Holtet and A. Egeland, (eds), 387–395, D. Reidel Publishers, Hingham, Mass.Google Scholar
  14. Horwitz, J. L., and Lockwood, M. (1985) ‘The cleft ion fountain: A two-dimensional kinetic model’, J. Geophys. Res., 90, 9749–9762.ADSCrossRefGoogle Scholar
  15. Lockwood, M., Chandler, M. 0, Horwitz, J. L., Waite, J. H., Moore, T. E., and Chappell, C. R. (1985) ‘The cleft ion fountain’, J. Geophys. Res., 90, 9736–9748.ADSCrossRefGoogle Scholar
  16. Lundin, R. (1988) ‘Acceleration/heating of plasma on auroral field lines: Preliminary results from the Viking satellite’, Annales Geophysicae, 6, 143–152.ADSGoogle Scholar
  17. Meng, C.-I. (1983) ‘Case studies of the storm time variation of the polar cusp’, J. Geophys. Res., 88, 137–149.ADSCrossRefGoogle Scholar
  18. Newell, P. T., and Meng, C.-I. (1988) ‘The cusp and the cleft/boundary layer: low altitude identification and statistical local time variation’, J. Geophys. Res., 93, 14549–14556.ADSCrossRefGoogle Scholar
  19. Newell, P. T., Meng, C.-I., Sibeck, D. G., and Lepping, R. (1989)‘Some low altitude cusp dependencies on the interplanetary magnetic field’, J. Geophys. Res., 9b, 1989.Google Scholar
  20. Paschmann, G., Haerendel, G., Sckopke, N., Rosenbauer, H., and Hedgecock, P. C. (1976) ‘Plasma and magnetic field characteristics of the distant polar cusp near noon: The entry layer’, J. Geophys. Res., 81, 2883–2899.ADSCrossRefGoogle Scholar
  21. Peterson, W. K., Andre, M., Crew, G. B., Persoon, A. M., Engebretson, M., and Pollock, C. (1988) ‘Heating of thermal oxygen ions near the equatorward boundary of the mid-altitude polar cusp: Dynamics Explorer Observations’, EOS, 69, 1379.Google Scholar
  22. Reiff, P. H., Hill, T. W., and Burch, J. L. (1977) ‘Solar wind plasma injection at the dayside magnetospheric cusp’, J. Geophys. Res., 82, 479–491.ADSCrossRefGoogle Scholar
  23. Shelley, E. G., Sharp, R. D., and Johnson, R. G. (1976) ‘He++ and H+ flux measurements in the dayside cusp: Estimates of convection electric field’, J. Geophys. Res., 81, 2363–2370.ADSCrossRefGoogle Scholar
  24. Sckopke, N., Paschmann, G., Haerendel, G., Sonnerup, B. U. O., Bame, S. J., Forbes, T. G., Hones, E. W., and Russell, C. T. (1986) ‘Structure of the low-latitude boundary layer’, J. Geophys. Res., 86, 2099–2110.ADSCrossRefGoogle Scholar
  25. Williams, D. J., Mitchell, D. G., Frank, L. A., and Eastman, T. E. (1988) ‘Three-dimensional magnetosheath plasma ion distributions from 200 eV to 2 MeV’, J. Geophys. Res., 93.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Patrick T. Newell
    • 1
  • Ching-I. Meng
    • 1
  1. 1.Applied Physics LaboratoryThe Johns Hopkins UniversityLaurelUSA

Personalised recommendations