Skip to main content

Auroral Oval Configuration During the Quiet Condition

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 278))

Abstract

The auroral oval configuration during the quiet condition is examined in this paper. The quiet condition can be defined as the very low Kp or AE index (i.e. Kp ≤ 1 and AE ≤ 100 nT) or the northward interplanetary magnetic field. The previous investigations are also reviewed here. On the basis of the auroral electron precipitations, the quiet time auroral oval is characterized by the spatially extended continuous electron precipitations poleward to above 80° geomagnetic latitude from the normal equatorial boundary of the oval. This extended oval configuration is evident both statistically and on the case study basis. The instantaneous quiet time auroral oval was imaged and the optical auroral oval is consistent with the particle precipitation configuration. Without any doubt that the polar cap size diminishes and the auroral oval widens during the quiet condition, it is believed that the so-called “sun-aligned polar cap arcs” are the manifestation of the auroral oval arcs in the latitudinally expanded dawn or dusk part of the oval. The optical emission intensity and the energy flux of the oval are much weaker during the quiet time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerson, K. L., and Frank, L. A. (1972) ‘Correlated satellite measurements of low-energy electron precipitation and ground level observations of a visual arc’, J. Geophys. Res., 77, 1128.

    Article  ADS  Google Scholar 

  • Akasofu, S.-I. (1974) ‘A study of auroral displays photographed from the DMSP-2 satellite and from the Alaska meridian chain of stations’, Space Sci. Rev., 16, 617.

    Article  ADS  Google Scholar 

  • Akasofu, S.-I. (1975) ‘The roles of the north-south component of the interplanetary magnetic field on large-scale auroral dynamics observed by the DMSP satellite’, Planet. Space Sci., 23, 1349.

    Article  ADS  Google Scholar 

  • Berkey, F. T., Cogger, L. L., Ismail S., and Kamide, Y. (1976) ‘Evidence for a correlation between sun-aligned arcs and the interplanetary magnetic field’, Geophys. Res. Lett., 3, 145.

    Article  ADS  Google Scholar 

  • Deehr, C. S., Winningham, J. D., Yasuhara, F., and Akasofu, S.-I. (1976) ‘Simultaneous observations of discrete and diffuse auroras by the ISIS-2 satellite and airborne instruments’, J. Geophys. Res., 81, 5527.

    Article  ADS  Google Scholar 

  • Fedorova, N. I., Temny V. V., and Galperin Yu. I. (1971) ‘Morphology of auroral electron energetic and angular distributions according to “Cosmos 261” measurements’, J. Atmos. Terr. Phys., 33, 731.

    Article  ADS  Google Scholar 

  • Frank, L. A., and Ackerson, K. L. (1972) ‘Local-time survey of plasma at low altitudes over the auroral zones’, J. Geophys. Res., 77, 4116.

    Article  ADS  Google Scholar 

  • Gussenhoven, M. S. (1982) ‘Extremely high latitude auroras’, J. Geophys. Res., 87, 2401.

    Article  ADS  Google Scholar 

  • Hardy, D. A., Burke, W. J., Gussenhoven, M. S., Heineman N. H., and Holeman, E. (1981) ‘DMSP/F2 electron observations of equatorward auroral boundaries and their relationships to the solar wind velocity and the north-south component of the interplanetary magnetic field’, J. Geophys. Res., 86, 9961.

    Article  ADS  Google Scholar 

  • Hardy, P. A., Gussenhoven, M. S., and Holeman E. (1985) ‘A statistical model of the auroral electron precipitation’, J. Geophys. Res., 90, 4229.

    Article  ADS  Google Scholar 

  • Heikkila, W. J., and Winningham, J. D. (1971) ‘Penetration of magnetosheath plasma to low altitudes through the dayside magnetic cusps’, J. Geophys. Res., 76, 883.

    Article  ADS  Google Scholar 

  • Hoffman, R. A. (1972) ‘Properties of low energy particle impacts in the polar domain in the dawn and dayside hours’, in Magnetosphere-Ionosphere Interactions, edited by K. FoIkestad, p. 117, Universitetsforlaget, Oslo.

    Google Scholar 

  • Hoffman, R. A., Burch, J. L. (1973) ‘Electron precipitation patterns and substorm morphology’, J. Geophys. Res., 78, 2867.

    Article  ADS  Google Scholar 

  • Holzworth, R. H., and Meng, C.-I. (1975) ‘Mathematical representation of the auroral oval’, Geophys. Res. Lett., 2, 377.

    Article  ADS  Google Scholar 

  • Hultqvist, B. (1974) ‘Rocket and satellite observations of energetic particle precipitation in relation to optical aurora’, Arm. Geophys., 30, 223.

    Google Scholar 

  • Ismail, S., and Meng, C.-I. (1982) ‘A classification of polar cap auroral arcs’, Planet. Space Set., 30, 319.

    Article  ADS  Google Scholar 

  • Lassen, K. (1972) ‘On the classification of high-latitude auroras’, Geofys. PubI. 29, 87, Universitetsforlaget, Oslo.

    Google Scholar 

  • Lassen, K. and Danielsen, C. (1978) ‘Quiet time pattern of auroral arcs for different directions of the interplanetary magnetic field in the Y-Z plane’, J. Geophys. Res., 83, 5277.

    Article  ADS  Google Scholar 

  • Lassen, K., Danielsen C., and Meng, C.-I. (1988) ‘Quiet-time average auroral configuration’, Planet. Sci., 36, 791.

    Article  ADS  Google Scholar 

  • Lui, A. T. Y., Venkatesan, D., Anger, C. D., Akasofu, S. I., Heikkila W. J., Winningham, J. D., and Burrows, J. R. (1977) ‘Simultaneous observations of particle precipitations and auroral emissions by the ISIS-2 satellite in the 19–24 MLT sector’, J. Geophys. Res., 82, 2210.

    Article  ADS  Google Scholar 

  • Lui, A. T. Y., Akasofu, S. I., Hones, E. W., Jr., Bame, S. J., and Mcllwain, C. E. (1976) ‘Observations of the plasma sheet during a contracted oval substorm in a prolonged quiet period’, J. Geophys. Res., 81. 1415.

    Article  ADS  Google Scholar 

  • Lui, A. T. Y., Akasofu, S.-I., Hones, Jr., E. W., Bame, S. J., and Mcllwain, C. E. (1978) ‘Observations of the plasma sheet during a contracted oval substorm in a prolonged quiet period’, J. Geophys. Res., 83, 5277.

    Article  ADS  Google Scholar 

  • Makita, K., Meng, C.-I., and Akasofu, S.-I. (1988) ‘Latitudinal electron precipitation patterns during large and small IMF magnitudes for northward IMF conditions’, J. Geophys. Res., 93, 97.

    Article  ADS  Google Scholar 

  • Makita, K. and Meng, C.-I. (1984) ‘Average electron precipitation patterns and visual auroral characteristics during geomagnetic quiescence’, J. Geophys. Res., 89, 2861.

    Article  ADS  Google Scholar 

  • Makita, K., Meng, C.-I., and Akasofu, S.-I. (1983) ‘The shift of the auroral electron precipitation boundaries in the dawn-dusk sector in association with geomagnetic activity and interplanetary magnetic field’, J. Geophys. Res., 88, 7967.

    Article  ADS  Google Scholar 

  • Meng, C.-I. (1978) ‘Simultaneous observations of low-energy electron precipitation and optical auroral arcs in the evening sector by the DMSP-32 satellite’, J. Geophys. Res., 81, 2771.

    Article  ADS  Google Scholar 

  • Meng, C.-I. (1978) ‘Electron precipitations and polar auroras’, Space Sci. Rev., 22, 223.

    Article  ADS  Google Scholar 

  • Meng, C.-I. (1981b) ‘The auroral electron precipitation during extremely quiet geomagnetic conditions’, J. Geophys. Res., 86, 4607.

    Article  ADS  Google Scholar 

  • Meng, C.-I. (1981b) ‘Polar cap arcs and the plasma sheet’, Geophys. Res. Lett., 8, 273.

    Article  ADS  Google Scholar 

  • Meng, C.-I., and Huffman, R. E. (1984) ‘Ultraviolet imaging from space up to the aurora under full sunlight’, Geophys. Res. Lett., 11, 315.

    Article  ADS  Google Scholar 

  • Meng, C.-I., and Huffman, R. E. (1987) ‘Preliminary observations from the auroral and ionospheric remote sensing imager’, Johns Hopkins APL Techincal Digest, 8, 303.

    ADS  Google Scholar 

  • Murphree, J. S., Anger, C. D., and Cogger, L. L. (1982) ‘The instantaneous relationship between polar cap and oval auroras at times of northward interplanetary magnetic field’, Can. J. Phys., 60, 349.

    Article  ADS  Google Scholar 

  • Schenkel, F. W., and Ogorzalek, B. S. (1984) ‘The HILAT vacuum ultraviolet auroral imager’, Johns Hopkins JHU Technical Digest, 5, 131.

    ADS  Google Scholar 

  • Schenkel, F. W., and Ogorzalek, B. S. (1987) ‘Remote sensing imager auroral images from space: Imagery, spectroscopy, and photometry’, Johns Hopkins JHU Technical Digest, 8, 308.

    ADS  Google Scholar 

  • Shepherd, G. G. (1979) ‘Dayside cleft aurora and its ionospheric effects’, Rev. Geophys., 17, 2017.

    Article  ADS  Google Scholar 

  • Shepherd, M. M., and Shepherd, G. G. (1979) ‘Comments on the low-altitude optical signatures of the magnetospheric boundary layers’, Proc. Magnetospheric Boundary Layers Conf., Alpbach, 11–15 June 1979 (ESA SP-148, August 1979).

    Google Scholar 

  • Winningham, J. D., Akasofu, S.-I., Yasuhara, F., and Heikkila, W. J. (1973) ‘Simultaneous observations of auroras from the south pole station and of precipitating electrons by ISIS-1’, J. Geophys. Res., 78, 6579.

    Article  ADS  Google Scholar 

  • Winningham, J. D., Yasuhara, S.-I., Akasofu, and Heikkila, W. (1975) ‘The latitudinal morphology of 10 eV to 10 keV electron fluxes during magnetically quiet and disturbed times in the 2100–0300 MLT sector’, J. Geophys. Res., 80, 3148.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Meng, C.I. (1989). Auroral Oval Configuration During the Quiet Condition. In: Sandholt, P.E., Egeland, A. (eds) Electromagnetic Coupling in the Polar Clefts and Caps. NATO ASI Series, vol 278. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0979-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0979-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6929-8

  • Online ISBN: 978-94-009-0979-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics