Skip to main content

Geomagnetic Response of the Polar Thermosphere and Ionosphere

  • Chapter
Electromagnetic Coupling in the Polar Clefts and Caps

Part of the book series: NATO ASI Series ((ASIC,volume 278))

Abstract

A self-consistent coupled thermospheric / ionospheric model has been developed by merging the University College London Global Thermospheric Model and the Sheffield University Ionospheric Model. The neutral thermospheric wind velocity, composition, density, and energy budget are computed, including their full interactions with the high-latitude ion drift, precipitation, Joule heating and plasma density. This model has been used to examine thermospheric and ionospheric coupling within the polar cap, polar cusp and auroral oval. Simulations have been performed corresponding to high solar activity, moderate geomagnetic activity (Kp = 3), for the June and December solstices, and for convection electric field patterns corresponding to positive and negative values of the IMF-BY component to examine variations with season, and responses to the interplanetary magnetic field. In the winter polar region, ion transport and the diurnal migration of the polar convection pattern into and out of sunlight, play a major role in the plasma density structure at F-region altitudes. Regions of intense Joule heating, and field-aligned currents and locations of high ion temperatures are very dependent on convection field distributions, so that regions of strong neutral-ionospheric interactions are dependent on the IMF-BY component. In the slimmer polar region, the proportion of molecular to atomic species increases sharply, driven by the summer to winter seasonal thermospheric circulation, augmented by additional geomagnetic forcing. In the winter polar region at 300 km the dominant ion is 0+. As a consequence of the seasonal neutral composition change, at levels of moderate geomagnetic activity, molecular (N0+ and 02 +) and 0+ ions are of similar number densities in the summer polar cap. The increased destruction of F-region ions in the summer polar region reduces the mean level of ionization to similar mean winter levels, despite increased solar insolation and ion production. The summer ion temperature at 300 km exceeds the winter values by 500°K, due to the underlying change in neutral temperature. In the lower thermosphere auroral oval the ion density is dominated by auroral precipitation in summer and in winter. Overall, there is a seasonal dependence in the height-integrated Joule heating rate and field-aligned currents (FAC) of about a factor of 2 – 3. Within the polar cusp, extra solar ionization in summer increases the conductivity to produce a threefold increase in peak Joule heating rates. There is a corresponding increase in the summertime cusp ionospheric currents and related FAC distributions. The intense neutral winds significantly modify the distribution of ionospheric currents, Joule heating and FAC, particularly in the dusk sector. Most of the neutral and electrodynamic parameters considered have strong IMF-BY dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fuller-Rowell T.J. and D.S. Evans, (1987), Height-Integrated Pedersen and Hall Conductivity Patterns Inferred from the NOAA/TIROS Satellite Data. J. Geophys. Res. 92, 7606–7618.

    Article  ADS  Google Scholar 

  2. Hardy D., M.S. Gussenhoven, E. Holeman, (1985), A statistical model of auroral electron precipitation. J Geophys. Res., 90, 4229–4248.

    Article  ADS  Google Scholar 

  3. Heppner J.P., (1977), Empirical Models of High Latitude Electric Field, J. Geophys. Res. 82, 1115–1125.

    Article  ADS  Google Scholar 

  4. Heppner J.P. and N.C. Maynard, (1987), Empirical High-Latitude Electric Field Models, J. Geophys. Res. 92, 4467–4490.

    Article  ADS  Google Scholar 

  5. Foster J.C., J.M. Holt, R.G. Musgrove and D.S. Evans, (1986), Ionospheric Convection associated with Discrete Levels of Particle Precipitation, Geophys. Res. Lett., 13, 656–659.

    Article  ADS  Google Scholar 

  6. Rees M.H., B.A. Emery, R.G. Roble, and K. Stamnes, (1983), Neutral and ion gas heating by auroral electron precipitation, J. Geophys. Res., 88, 6289–6300.

    Article  ADS  Google Scholar 

  7. Rees D., R. Gordon, T.J. Fuller-Rowell, M.F. Smith, G.R. Carignan, T.L. Killeen, P.B. Hays, and N.W. Spencer, (1985), The composition, structure, temperature and dynamics of the upper thermosphere in the polar regions during October to December 1981, Planet. Space. Sci. 33, 617–666.

    Article  ADS  Google Scholar 

  8. Fuller-Rowell T.J., D. Rees, S. Quegan, R.J. Moffett, G.J. Bailey, (1988), Simulations of the seasonal and universal time variations of the thermosphere and ionosphere using a coupled, three-dimensional, global model. PAGEOPHYS. 127. 189–217.

    Article  Google Scholar 

  9. Martyn D. F., Geo-morphology of F2-region ionospheric storms, (1953), Nature, 171, 14–16.

    Article  ADS  Google Scholar 

  10. Tinsley B.A., Y. Sahai, M.A. Biondi and J.W. Meriwether, (1988), Equatorial particle precipitation during geomagnetic storms and relationship to equatorial thermospheric heating. J. Geophys. Res., 93. 270–276.

    Article  ADS  Google Scholar 

  11. Fuller-Rowell T.J. and D. Rees, (1980), A three-dimensional, time-dependent. global model of the thermosphere, J. Atmos. Sci. 37 2545–2567.

    Article  ADS  Google Scholar 

  12. Fuller-Rowell T.J. and D. Rees, (1983), Derivation of a conservative equation for mean molecular weight for a two constituent gas within a three-dimensional. time-dependent model of the thermosphere. Planet. Space Sci. 31, 1209–1222.

    Article  ADS  Google Scholar 

  13. Roble, R.G., R.E. Dickinson and E.C. Ridley, (1982), The global circulation and temperature structure of the thermosphere with high- latitude plasma convection. J. Geophys. Res. 87, 1599–1614.

    Article  ADS  Google Scholar 

  14. Dickinson R.E., E.C. Ridley and R.G. Roble, (1984), Thermospheric general circulation with coupled dynamics and composition, J. Atmos. Terr. Phys. 41, 205–219.

    Google Scholar 

  15. Hays P.B., T.L Killeen. N.W. Spencer, L.E. Wharton, R.G. Roble, B.A. Emery, T.J. Fuller-Rowell, D. Rees, L.A. Frank, and J.D. Craven, (1984), Observations of the dynamics of the polar thermosphere, J. Geophys. Res. 89, 5547–5612.

    Article  Google Scholar 

  16. Rees D., T.J. Fuller-Rowell, R. Gordon, T.L. Killeen, P.B. Hays, L.E. Wharton and N.W. Spencer, (1983), A comparison of the wind observations from the Dynamics Explorer satellite with the predictions of a global time-dependent model, Planet. Space Sci. 31, 1299–1314.

    Article  ADS  Google Scholar 

  17. Rees D., T.J. Fuller-Rowell, R. Gordon, M.F. Smith, J. P. Heppner, N.C. Maynard, N.W. Spencer, L.E. Wharton, P.B. Hays, and T.L. Killeen, (1986), A theoretical and empirical study of the response of the high- latitude thermosphere to the sense of the “Y” component of the interplanetary magnetic field, Planet. Space Sci. 34, 1–40.

    Article  ADS  Google Scholar 

  18. Fesen C., R.G. Roble, E.C. Ridley, (1986), Simulations of thermospheric tides at equinox with the NCAR Thermospheric General Circulation Model. J. Geophys. Res., 91, 4471–4489.

    Article  ADS  Google Scholar 

  19. Parish H. T.J. Fuller-Rowell, D. Rees, T.S. Virdi and P.S.J Williams, Numerical simulations of the seasonal response of the thermospheric to propagating tides. (1989), Adv. Space Res, (in press).

    Google Scholar 

  20. Rishbeth H. and O.K. Garriot, (1969), Introduction to Ionospheric Physics, Academic Press, New York and London.

    Google Scholar 

  21. Cole K.D., (1962), Joule heating of the upper atmosphere. Aust. J. Phys., 15, 223–235.

    Article  ADS  Google Scholar 

  22. Cole K.D., (1971), Electrodvnamic heating and movement of the thermosphere, Planet. Space Sci. 19, 59–75.

    Article  ADS  Google Scholar 

  23. Rees D., (1971), Ionospheric winds in the auroral zone, J. Brit. Interplan. Soc. 24, 233–346.

    ADS  Google Scholar 

  24. Rees D., (1973), Neutral wind structure in the thermosphere during quiet and disturbed geomagnetic periods, in Physics and Chemistry of Upper Atmospheres (Edited by B.M. McCormac), 11–23, Reidel, Dortrecht.

    Google Scholar 

  25. Pereira E., M.C. Kelley, D. Rees, I.S. Mikkelson, T.S. Jorgensen and T.J. Fuller-Rowell, (1980), Observations of neutral wind profiles between 115 and 176 km altitude in the davside auroral oval. J. Geophys. Res. 85, 2935–2940.

    Article  ADS  Google Scholar 

  26. Harel M., R.A. Wolf, P.H. Reiff. R.W. Spiro, W.J. Burke, F.J. Rich and M. Smiddy, (1981), Quantitative Simulation of a Magnetospheric Substorm. 1. Model Logic and Overview, J. Geophys. Res. 86, 2217–2241.

    Article  ADS  Google Scholar 

  27. Fuller-Rowell T.J., D. Rees, S. Quegan, R.J. Moffett, and G.J. Bailey, (1987), The thermospheric response and feedback to magnetospheric forcing. Extended Abstract, Symposium on Quantitative Modeling of Magnetosphere-Ionosphere coupling processes. Convenors: Y. Kamide and R.A. Wolf, March 9–13, 1987 Kyoto Sangyo University. p20.

    Google Scholar 

  28. Quegan S., G.J. Bailey, R.J. Moffett, R.A. Heelis, T.J. Fuller-Rowell, D. Rees and R.W. Spiro, (1982), Theoretical study of the distribution of ionization in the high-latitude ionosphere and the plasmasphere: First results on the mid-latitude trough and the light-ion trough, J. Atmos. Terr. Phys. 44, 619–640.

    Article  ADS  Google Scholar 

  29. Fuller-Rowell, T.J., D. Rees, S. Quegan, G.J. Bailey AND R.J. Moffett, (1984), The effect of realistic conductivities on the high-latitude thermospheric circulation, Planet. Space Sci. 32, 469–480.

    Article  ADS  Google Scholar 

  30. Quegan S., G.J. Bailey, R.J. Moffett and L.C. Wilkinson, (1986), Universal time effects on the plasma convection in the geomagnetic frame, J. Atmos. Terr. Phys. 48, 25–40.

    Article  ADS  Google Scholar 

  31. Watkins B.J., (1978), A numerical computer investigation of the polar F-region, Planet. Space Sci., 26, 559–569.

    Article  ADS  Google Scholar 

  32. Allen B.T., G.J. Bailey and R.J. Moffett, (1986), Ion distributions in the high-latitude topside ionosphere, Ann. Geophysicae 4 A, 97–106.

    ADS  Google Scholar 

  33. Fuller-Rowell T.J., S. Quegan, D. Rees, R.J. Moffett, G.J. Bailey, (1987b), Interactions between neutral thermospheric composition and the polar ionosphere using a coupled ionosphere-thermosphere model, J. Geophys. Res. 92, 7744–7748.

    Article  ADS  Google Scholar 

  34. Chiu Y.T., (1975), An improved phenomenological model of ionospheric density, J. Atmos. Terr. Phys. 37, 1563–1570.

    Article  ADS  Google Scholar 

  35. Rees D., and T.J. Fuller-Rowell, Invited paper presented at the AGARD/NATO meeting in Munich, May 1988, to be published in the proceedings.

    Google Scholar 

  36. Sojka J.J. and R.W. Schunk, (1983), A theoretical study of the high-latitude F-region response to magnetospheric storm inputs, J. Geophys. Res. 88, 2112–2122.

    Article  ADS  Google Scholar 

  37. Fuller-Rowell T.J. and D. Rees, (1984), Interpretation of an anticipated long-lived vortex in the lower thermosphere following simulation of an isolated substorm. Planet. Space Sci. 32, 69–85, 1984.

    Google Scholar 

  38. McCormac F.G. and R.W. Smith, (1984), The influence of the Interplanetary Magnetic Field Y component on ion and neutral motions in the polar thermosphere, Geophys. Res. Lett., 11, 935–938.

    Article  ADS  Google Scholar 

  39. Rees D. T.J. Fuller-Rowell, M.F. Smith, R. Gordon, T.L. Killeen, P.B. Hays, N.W. Spencer, L.E. Wharton and N.C. Maynard, (1985), The Westward Thermospheric Jet Stream of the evening auroral oval. Planet Space Sci. 33. 425–456.

    Article  ADS  Google Scholar 

  40. Hedin A.E., (1987), MSIS-86 thermospheric model, J. Geophys. Res. 92, 4649.

    Article  ADS  Google Scholar 

  41. Rees D., T.J. Fuller-Rowell, Invited paper presented at the Chapman Conference on Auroral Physics, Cambridge, June 1988, to be published in the proceedings.

    Google Scholar 

  42. Killeen T.L., B. Nardi, F.G. McCormac, J.W. Meriwether Jnr., J.P Thayer., R.G. Roble, T.J. Fuller-Rowell and D. Rees, (1989), Lower Thermospheric Structure and Dynamics Inferred from Satellite and Ground-based Fabry-Perot Observations of the 0(1S) Green line Emission. Adv. Space Res, (in press).

    Google Scholar 

  43. Johnson R.H., V.B. Wickwar, R.G. Roble and J.G. Luhmann, Lower thermospheric winds at high latitudes: Chatanika radar Observations. (1987), Annal. Geophsyics., 5, 383–404.

    ADS  Google Scholar 

  44. Nygren, T., L. Jalonen, J. Oskman and T. Turinen, The role of electric field and neutral wind direction in the formation of sporadic-E layers, (1984), J. Atmos. Terr. Phys., 46, 373.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rees, D., Fuller-Rowell, T.J. (1989). Geomagnetic Response of the Polar Thermosphere and Ionosphere. In: Sandholt, P.E., Egeland, A. (eds) Electromagnetic Coupling in the Polar Clefts and Caps. NATO ASI Series, vol 278. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0979-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0979-3_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6929-8

  • Online ISBN: 978-94-009-0979-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics