Basic theoretical issues of stress analysis. Accepted models

  • J. T. Pindera
  • M.-J. Pindera
Part of the Engineering Application of Fracture Mechanics book series (EAFM, volume 8)

Abstract

Rational optimization of the performance of engineering structures requires that all pertinent physical quantities and parameters be defined unequivocally, and be determinable with satisfactory reliability and accuracy. For a design engineer, the measures of reliability and accuracy are the actual responses of the actual physical bodies, structures, and systems to the actual flow of energy, as discussed in Chapter 1.

Keywords

Local Effect Thin Plate Plane Stress State Finite Thickness Normal Stress Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aleksandrov, A. D., Kolgomorov, A. N., and Lavrent’ev, M. A., Mathematics, Its Content, Methods and Meaning (translated from the Russian edition: “Matematika, ye Soderzhanye, Metody i Znachenye”, Izdatielstvo Akademii Nauk SSSR, Moskva, 1956 ), The MIT Press, Cambridge, MA, 1981.Google Scholar
  2. [2]
    Borg, S. F., Matrix-Tensor Methods in Continuum Mechanics, D. Van Nostrand Company, Princeton, 1963.Google Scholar
  3. [3]
    Bui, H. D., “Théorie linéare de la rupture”, Revue Française de Mécanique 3 (1983), pp. 3–7.Google Scholar
  4. [4]
    Doeblin, Ernest O., Measurement Systems: Application and Design, McGraw-Hill Book Company, New York, 1983.Google Scholar
  5. [5]
    Ellyin, F., Lind, N. C., and Sherbourne, A. N., “Elastic Stress Field in a Plate with a Skew Hole”, J. of Eng. Mechanics Division, ASCE 92 (EM1), 1966, pp. 1–10.Google Scholar
  6. [6]
    Ellyin, F. and Sherbourne, A. N., “Effect of Skew Penetration on Stress Concentration”, J. of Eng. Mechanics Division, ASCE 94 (EM6), 1968, pp. 1317–1336.Google Scholar
  7. [7]
    Kestin, Joseph, A Course in Thermodynamics, Vols. I and II, McGraw-Hill Book Company, New York, 1979.Google Scholar
  8. [8]
    Khanukayev, A. N., “A Study of the Effect of Interference of Two Waves Successively Reflected from the Free End of a Rod” (in Russian), in: S. P. Shikhobalov (Ed.), Polarization-Optical Method of Stress Analysis, University of Leningrad, Leningrad, 1960, pp. 253–256.Google Scholar
  9. [9]
    Ladevèze, Pierre (Ed.), Local Effects in the Analysis of Structures, Elsevier, New York, 1985.MATHGoogle Scholar
  10. [10]
    Lakes, Roderick, “Foam Structures with a Negative Poisson’s Ratio”, Science 235, 1987, pp. 1038–1040.ADSCrossRefGoogle Scholar
  11. [11]
    Lewicki, B. and Pindera, J. T., “Photoelastic Models of Reinforced Structures” (in Polish), Archiwum Inzynierii Ladowej, Vol. II (4), 1956, pp. 381–418.Google Scholar
  12. [12]
    Mohamed, F. A. and Soliman, M. S., “On the Creep Behaviour of Uranium Dioxide”, Materials Science and Engineering 53, 1982, pp. 184–190.CrossRefGoogle Scholar
  13. [13]
    Müller, R. K., “Der Einfluss der Messlänge auf die Ergebnisse bei Dehnmessungen an Beton”, Beton 14 (5), 1964, pp. 205–208.Google Scholar
  14. [14]
    Neuber, H., Kerbspannungslehre (Notch Stresses), Verlag von Julius Springer, Berlin, 1937.Google Scholar
  15. [15]
    Pindera, J. T., On Application of Brittle Coatings for Determination of Regions of Plastic Deformations (in Polish), Engineering Transactions (Rozprawy Inzynierskie), Polish Acad. of Sciences, Vol. V (1), 1957, pp. 33–47.Google Scholar
  16. [16]
    Pindera, Jerzy T., Rheological Properties of Some Polyester Resins, Part I, II, III (in Polish), Engineering Transactions (Rozprawy Inzynierskie)Polish Acad. Sciences, Vol. VII (3 and 4), 1959, pp. 361–411, 481–520, 521–540.Google Scholar
  17. [17]
    Pindera, J. T., Straka, P., and Tschinke, M. F., “Actual Thermoelastic Response of Some Engineering Materials and Its Applicability in Investigations of Dynamic Response of Structures”, VDI-Berichte, Nr. 313, 1978, pp. 579–584.Google Scholar
  18. [18]
    Pindera, J. T., “Contemporary Trends in Experimental Mechanics: Foundations, Methods, Applications”, in: J. T. Pindera et al. (Eds), Experimental Mechanics in Research and Development, Solid Mechanics Division, University of Waterloo, Study No. 9, Waterloo, 1973, pp. 143–168.Google Scholar
  19. [19]
    Pindera, Jerzy T., “Foundations of Experimental Mechanics: Principles of Modelling, Observation and Experimentation”, in: J. T. Pindera (Ed.), New Physical Trends in Experimental Mechanics, Springer-Verlag, Wien, 1981, pp. 188–236.Google Scholar
  20. [20]
    Pindera, J. T. and Krasnowski, B. R., “Determination of Stress Intensity Factors in Thin and Thick Plates Using Isodyne Photoelasticity”, in: Simpson, Leonard A. (Ed.), Fracture Problems & Solutions in the Energy Industry, Pergamon Press, 1982, pp. 147–156.Google Scholar
  21. [21]
    Pindera, J. T. (Ed.), Modelling Problems in Crack Tip Mechanics (Proc. of the Tenth Canadian Fracture Conference, August 24–26, 1983, University of Waterloo), Martinus Nijhoff, The Hague, The Netherlands, 1984.Google Scholar
  22. [22]
    Pindera, J. T., Krasnowski, B. R., and Pindera, M.-J., “Theory of Elastic and Photoelastic Isodynes. Samples of Applications in Composite Structures”, Experimental Mechanics 25 (3), 1985, pp. 272–281.CrossRefGoogle Scholar
  23. [23]
    Pipes, R. B. and Pagano, N. J., “Interlaminar Stresses in Composite Laminates under Uniform Axial Extension”, J. Composite Materials 4, 1970, pp. 538–548.Google Scholar
  24. [24]
    Provan, J. W., “The Micromechanics of Fatigue Crack Initiation”, in: Pindera, Jerzy T. (Ed.), Modelling Problems in Crack Tip Mechanics, Martinus Nijhoff Publishers, Dordrecht, 1984, pp. 131–154.Google Scholar
  25. [25]
    Rohrbach, Ch., “Dehnnungsmesstreifen mit metallischen Träger als schnell messbereites, feuchtigkeitsunempfindliches Messelement für Dehnnungsmessungen auf Beton”, Der Bauingenieur 33, 1958, pp. 265–268.Google Scholar
  26. [26]
    Sarin, G. N., Kontsentratsya Napriazhenii Okolo Otverstii (Stress Concentration around Holes), Gosnd. Izw. Tehkniko-Teoreticheskoy Literatury, Moskva, 1951.Google Scholar
  27. [27]
    Siebel, E., Handbuch der Werkstoffpriifung, Vols. 1 and 2, Springer-Verlag, Berlin, 1958 and 1955.Google Scholar
  28. [28]
    Sih, G. C., Williams, M. L., and Swedlow, J. L., Three-Dimensional Stress Distribution Near a Sharp Crack in a Plate of Finite Thickness, Air Force Materials Laboratory, Wright Patterson Air Force Base, AFML-TR, 1966, pp. 66–242.Google Scholar
  29. [29]
    Sih, G. C., “A Review of the Three-Dimensional Stress Problem for a Cracked Plate”, International Journal of Fracture Mechanics 7, 1971, pp. 39–61.CrossRefGoogle Scholar
  30. [30]
    Sih, G. C., “The State of Affairs Near the Crack Tip”, in: Pindera, Jerzy T. (Ed.), Modelling Problems in Crack Tip Mechanics, Martinus Nijhoff Publishers, Dordrecht, 1984, pp. 65–90.Google Scholar
  31. [31]
    Sokolnikoff, I. S., Mathematical Theory of Elasticity, McGraw-Hill, 1956.MATHGoogle Scholar
  32. [32]
    Sternberg, E. and Sadovsky, M. A., “Three-Dimensional Solution for the Stress Concentration around a Circular Hole in a Plate of Arbitrary Thickness”, Journal of Applied Mechanics, ASME 16 (1), 1949, pp. 27–38.Google Scholar
  33. [33]
    Thum, A. and Svenson, O., “Die Verformungs-und Beanspruchungsverhältnisse von glatten und gekerbten Stäben, Scheiben and Platten in Abhängigkeit von deren Dicke und Belastungsart”, Forschung Ing. Wes. 13, 1942, pp. 1–11.CrossRefGoogle Scholar
  34. [34]
    Thum, A., Petersen, C., and Svenson, O., Verformung, Spannung und Kerbwirkung (Deformation, Stress and Notch Action), VDI-Verlag, Dusseldorf, 1960.Google Scholar
  35. [35]
    Wang, S. S. and Choi, I., “Boundary-Layer Effects in Composite Laminates: Part II — Free-Edge Stress Solutions and Basic Characteristics”, J. Applied Mechanics 49, 1982, pp. 549–560.ADSMATHCrossRefGoogle Scholar
  36. [36]
    Youngdahl, C K and Sternberg, E., “Three-Dimensional Stress Concentration Around a Cylindrical Hole in a Semi-Infinite Elastic Body”, Journal of Applied Mechanics, ASME 33 (4), 1966, pp. 855–865.MATHGoogle Scholar

Copyright information

© J. T. Pindera and Sons Engineering Services, Ontario, Canada 1989

Authors and Affiliations

  • J. T. Pindera
    • 1
  • M.-J. Pindera
    • 2
  1. 1.Department of Civil EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Department of Civil EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations