Skip to main content

Physiological Significance and Bioenergetic Aspects of Glucose Dehydrogenase

  • Chapter
PQQ and Quinoproteins

Abstract

The regulation of the PQQ-linked glucose dehydrogenase in different organisms is reviewed. It is concluded that this enzyme functions as an auxiliary energy-generating mechanism, because it is maximally synthesized under conditions of energy stress. It is now definitively established that the oxidation of glucose to gluconate generates metabolically useful energy. The magnitude of the contribution of the oxidation of glucose to gluconate via this enzyme to the growth yield of organisms such as Acinetobacter calcoaceticus is not yet clear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ameyama M, Shinagawa E, Matsushita K, and Adachi O, 1985. Growth stimulating activity for microorganisms in naturally occurring substances and partial characterization of the substance for the activity as PQQ. Agricultural and Biological Chemistry 49: 699–709.

    Article  CAS  Google Scholar 

  • Beardmore-Gray M, and Anthony C, 1986. The oxidation of glucose by Acinetobacter calcoaceticus: the interaction of the quinoprotein glucose dehydrogenase with the electron transport chain. Journal of General Microbiology 132: 1257–1268.

    PubMed  CAS  Google Scholar 

  • Boiardi JL, Buurman ET, Hardy GPMA, Teixeira de Mattos MJ, and Neijssel OM, 1988. The effect of magnesium and calcium on the synthesis of PQQ in Klebsiella aerogenes and Pseudomonas species. Poster abstract, First International Symposium on PQQ and Quinoproteins, Delft.

    Google Scholar 

  • Bont JAM de, Dokter P, Schie BJ van, Dijken JP van, Frank Jzn J, Duine JA, and Kuenen JG, 1984. Role of quinoprotein glucose dehydrogenase in gluconic acid production by Acinetobacter calcoaceticus. Antonie van Leeuwenhoek 50: 76–77.

    Article  Google Scholar 

  • Boutroux L, 1880. Sur une fermentation nouvelle du glucose. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences 91: 236–238.

    Google Scholar 

  • Campbell JJR, Ramakrishna T, Linnes AG, and Eagles BA, 1956. Evaluation of the energy gained by Pseudomonas aeruginosa during the oxidation of glucose to 2-ketogluconate. Canadian Journal of Microbiology 2: 304–310.

    Article  PubMed  CAS  Google Scholar 

  • Dalby A, and Blackwood AC, 1955. Oxidation of sugars by an enzyme preparation from Aerobacter aerogenes. Canandian Journal of Microbiology 1: 733–742.

    Article  CAS  Google Scholar 

  • Duine JA, Frank Jzn J, and Zeeland JK van, 1979. Glucose dehydrogenase from Acinetobacter calcoaceticus: a quinoprotein. FEBS Letters 108: 443–446.

    Article  PubMed  CAS  Google Scholar 

  • Hardy GPMA, Teixeira de Mattos MJ, and Neijssel OM, 1988. The regulation of the PQQ-linked glucose dehydrogenase in chemostat cultures of Pseudomonas species. Poster abstract, First International Symposium on PQQ and Quinoproteins, Delft.

    Google Scholar 

  • Hauge JG, 1964. Glucose dehydrogenase of Bacterium anitratum: an enzyme with a novel prosthetic group. Journal of Biological Chemistry 239: 3630–3639.

    PubMed  CAS  Google Scholar 

  • Hommes RWJ, 1988. The role of the PQQ-linked glucose dehydrogenase in the physiology of Klebsiella aerogenes and Escherichia coli. PhD thesis, University of Amsterdam.

    Google Scholar 

  • Hommes RWJ, Hell B van, Postma PW, Neijssel OM, and Tempest DW, 1985. The functional significance of glucose dehydrogenase in Klebsiella aerogenes. Archives of Microbiology 143: 163–168.

    Article  PubMed  CAS  Google Scholar 

  • Hommes RWJ, Loenen WAM, Neijssel OM, and Postma PW, 1986. Galactose metabolism in gal mutants of Salmonella typhimurium and Escherichia coli. FEMS Microbiology Letters 36: 187–190.

    Article  CAS  Google Scholar 

  • Hommes RWJ, Postma PW, Neijssel OM, Tempest DW, Dokter P, and Duine JA, 1984. Evidence of a quinoprotein glucose dehydrogenase apoenzyme in several strains of Escherichia coli. FEMS Microbiology Letters 24: 329–333.

    Article  CAS  Google Scholar 

  • Mackechnie I, and Dawes EA, 1969. An evaluation of the pathways of metabolism of glucose, gluconate and 2-oxogluconate by Pseudomonas aeruginosa by measurement of molar growth yields. Journal of General Microbiology 55: 341–349.

    PubMed  CAS  Google Scholar 

  • Matsushita K, and Ameyama M, 1982. D-Glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound. Methods in Enzymology 89: 149–154.

    Article  PubMed  CAS  Google Scholar 

  • Matsushita K, Nonobe M, Shinagawa E, Adachi O and Ameyama M, 1987. Reconstitution of pyrroloquinoline quinone-dependent D-glucose oxidase respiratory chain of Escherichia coli with cytochrome o oxidase. Journal of Bacteriology 169: 205–209.

    PubMed  CAS  Google Scholar 

  • Mulder MM, Teixeira de Mattos MJ, Postma PW, and Dam K van, 1986. Energetic consequences of multiple K+ uptake systems in Escherichia coli. Biochimica et Biophysica Acta 851: 223–228.

    Article  PubMed  CAS  Google Scholar 

  • Neijssel OM, 1977. The effect of 2,4-dinitrophenol on the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostat cultures. FEMS Microbiology Letters 1: 47–50.

    Article  CAS  Google Scholar 

  • Neijssel OM, and Tempest DW, 1975. The regulation of carbohydrate metabolism in Klebsiella aerogenes NCTC 418 organisms, growing in chemostat culture. Archives of Microbiology 106: 251–258.

    Article  PubMed  CAS  Google Scholar 

  • Neijssel OM, Tempest DW, Postma PW, Duine JA, and Frank Jzn J, 1983. Glucose metabolism by K+-limited Klebsiella aerogenes: evidence for the involvement of a quinoprotein glucose dehydrogenase. FEMS Microbiology Letters 20: 35–39.

    Article  CAS  Google Scholar 

  • Nelson DL, and Kennedy EP, 1972. Transport of magnesium by a repressible and a nonrepressible system in Escherichia coli. Proceedings of the National Academy of Sciences of the U.S.A. 69: 1091–1093.

    Article  CAS  Google Scholar 

  • Ng FMW, and Dawes EA, 1973. Chemostat studies on the regulation of glucose metabolism in Pseudomonas aeruginosa by citrate. Biochemical Journal 132: 129–140.

    PubMed  CAS  Google Scholar 

  • Niederpruem DJ, and Doudoroff M, 1965. Cofactor-dependent aldose dehydrogenase from Rhodopseudomonas sphaeroides. Journal of Bacteriology 89: 697–705.

    PubMed  CAS  Google Scholar 

  • Schie BJ van, 1987. The physiological function of gluconic acid production in Acinetobacter species and other gram-negative bacteria. Implications for energy conservation. PhD thesis, University of Technology, Delft.

    Google Scholar 

  • Schie BJ van, Dijken JP van, and Kuenen JG, 1984. Non-coordinated synthesis of glucose dehydrogenase and its prosthetic group PQQ in Acinetobacter and Pseudomonas species. FEMS Microbiology Letters 24: 133–138.

    Article  Google Scholar 

  • Schie BJ van, Hellingwerf KJ, Dijken JP van, Elferink MGL, Dijl JM van, Kuenen JG, and Konings WN, 1985. Energy transduction by electron transfer via a pyrrolo-quinoline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus (var. lwoffi). Journal of Bacteriology 163: 493–499.

    PubMed  Google Scholar 

  • Schie BJ van, Mooy OH de, Linton JD, Dijken JP van, and Kuenen JG, 1987a. PQQ-dependent production of gluconic acid by Acinetobacter, Agrobacterium, and Rhizobium species. Journal of General Microbiology 133: 867–875.

    Google Scholar 

  • Schie BJ van, Pronk JT, Hellingwerf KJ, Dijken JP van, and Kuenen JG, 1987b. Glucose-dehydrogenase-mediated solute transport and ATP synthesis in Acinetobacter calcoaceticus. Journal of General Microbiology 133: 3427–3435.

    Google Scholar 

  • Schie BJ van, Rouwenhorst RJ, Bont JAM de, Dijken JP van, and Kuenen JG, 1987c. An in vivo analysis of the energetics of aldose oxidation by Acinetobacter calcoaceticus. Applied Microbiology and Biotechnology 26: 560–567.

    Article  Google Scholar 

  • Uspenskaya SN, and Loitsyanskaya MS, 1979. Effectiveness of the utilization of glucose by Gluconobacter oxydans. Microbiology 48: 306–310.

    Google Scholar 

  • Willsky GR, and Malamy MH, 1974. The loss of the phoS periplasmic protein leads to a change in the specificity of a constitutive inorganic phosphate transport system in Escherichia coli. Biochemical and Biophysical Research Communications 60: 226–233.

    Article  PubMed  CAS  Google Scholar 

  • Willsky GR, and Malamy MH, 1976. Control of the synthesis of alkaline phosphatase and the phosphate binding protein in Escherichia coli. Journal of Bacteriology 127: 595–609.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Neijssel, O.M., Hommes, R.W.J., Postma, P.W., Tempest, D.W. (1989). Physiological Significance and Bioenergetic Aspects of Glucose Dehydrogenase. In: Jongejan, J.A., Duine, J.A. (eds) PQQ and Quinoproteins. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0957-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0957-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6920-5

  • Online ISBN: 978-94-009-0957-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics