Binary vectors

  • Gynheung An
  • Paul R. Ebert
  • Amitava Mitra
  • Sam B. Ha

Abstract

Agrobacterium tumefaciens is capable of transferring a defined piece of DNA (T-DNA) containing tumorigenic loci from its tumor-inducing (Ti) plasmid into the genome of a large number of gymnosperms and angiosperms [1–3]. This process requires the cis acting T-DNA border sequences [4–6] and the trans acting virulence (vir) functions encoded by the Ti plasmid and the Agrobacterium chromosome [7–10]. The transfer process is fully active when the vir functions and the T-DNA are located on separate compatible replicons in Agrobacterium [11]. These features made the development of binary vectors possible [12–15]. In such systems, the Agrobacterium host strain contains a wild-type Ti plasmid or disarmed (tumor genes deleted) Ti plasmid that carries the vir functions and serves a a helper. The T-DNA borders are located on a compatible replicón that will function in both E. coli and Agrobacterium. DNA that is inserted between the T-DNA borders will be efficiently transferred to and stably maintained within the plant genome.

Keywords

Binary Vector Fall Leaf Lake Callus Maintenance Medium Transform Tobacco Cell Transcription Termination Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chilton MD, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271.PubMedCrossRefGoogle Scholar
  2. 2.
    Chilton MD, Saiki RK, Yadav N, Gordon MP, Quetier F (1980) T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA of crown gall tumor cells. Proc Natl Acad Sci USA 77:4060–4064.PubMedCrossRefGoogle Scholar
  3. 3.
    Willmitzer L, De Beuckeleer M, Lemmers M, Van Montagu M, Schell J (1980) DNA from Ti plasmid present in nucleus and absent from plastids of crown gall plant cells. Nature 287:359–361.CrossRefGoogle Scholar
  4. 4.
    Shaw CH, Watson MD, Carter GH, Shaw CH (1984) The right hand copy of the nopaline Ti-plasmid 25bp repeat is required for tumor formation. Nucleic Acids Res 12:6031–6041.PubMedCrossRefGoogle Scholar
  5. 5.
    Wang K, Herrera-Estrella L, Van Montagu M, Zambryski P (1984) Right 25bp terminus sequence of the nopaline T-DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome. Cell 38:455–462.PubMedCrossRefGoogle Scholar
  6. 6.
    Peralta EG, Hellmiss R, Ream LW (1986) Overdrive, a T-DNA transmission enhancer on the A. tumefaciens Ti plasmid. EMBO J 5:1137–1142.PubMedGoogle Scholar
  7. 7.
    Lundquist RC, Close TJ, Kado CI (1984) Genetic complementation of Agrobacterium tumefaciens Ti plasmid mutants in the virulence region. Mol Gen Genet 193:1–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Stachel S, Nester EW (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of A. tumefaciens. EMBO J 5:1445–1454.PubMedGoogle Scholar
  9. 9.
    Garfinkel DJ, Nester EW (1980) Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bact 144:732–743.PubMedGoogle Scholar
  10. 10.
    Douglas CJ, Staneloni RJ, Rubin RA, Nester EW (1985) Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence region. J Bact 161:850–860.PubMedGoogle Scholar
  11. 11.
    Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of the vir- and T-region of A. tumefaciens Ti plasmid. Nature 303:179–180.CrossRefGoogle Scholar
  12. 12.
    An G, Watson BD, Stachel S, Gordon MP, Nester EW (1985) New cloning vehicles for transformation of higher plants. EMBO J 4:277–288.PubMedGoogle Scholar
  13. 13.
    Bevan MW (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721.PubMedCrossRefGoogle Scholar
  14. 14.
    Hoekema A, Van Haaren MJJ, Fellinger AJ, Hooykaas PJJ, Schilperoort RA (1985) Nononcogenic plant vectors for use in the Agrobacterium binary system. Plant Mol Biol 5:85–89.CrossRefGoogle Scholar
  15. 15.
    Klee HJ, Yanosky MF, Nester EW (1985) Vectors for transformation of higher plants. Bio/Technology 3:637–642.CrossRefGoogle Scholar
  16. 16.
    Freeman JP, Draper J, Davey MR, Cocking EC, Gartland KMA, Harding K, Pental D (1984) A comparison of methods for plasmid delivery into plant protoplasts. Plant Cell Physiol 25:1353–1365.Google Scholar
  17. 17.
    Fromm ME, Taylor LP, Walbot V (1985) Expression of genes electroporated into monocot and dicot plant cells. Proc Natl Acad Sci USA 82:5824–5828.PubMedCrossRefGoogle Scholar
  18. 18.
    Shillito RD, Saul MW, Paszkowski J, Muller M, Potrykus I (1985) High efficiency direct gene transfer to plants. Bio/Technology 3:1099–1103.CrossRefGoogle Scholar
  19. 19.
    An G (1985) High efficiency transformation of cultured tobacco cells. Plant Physiol 79:568–570.PubMedCrossRefGoogle Scholar
  20. 20.
    Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231.CrossRefGoogle Scholar
  21. 21.
    Krens FA, Mans RMW, Van Slogteren TMS, Hoge JHC, Wullems GJ, Schilperoort RA (1985) Structure and expression of DNA transferred to tobacco via transformation of protoplasts with Ti plasmid DNA: co-transfer of T-DNA and non-T-DNA sequences. Plant Mol Biol 5:223–234.CrossRefGoogle Scholar
  22. 22.
    Czernilofsky AP, Hain R, Herrera-Estrella L, Lorz H, Goyvaerts E, Baker BJ, Schell J (1986) Fate of selectable marker DNA integrated into the genome of Nicotiana tabacum. DNA 5:101–113.PubMedCrossRefGoogle Scholar
  23. 23.
    Wallroth M, Gerats AGM, Rogers SG, Fraley RT, Horsch RB (1986) Chromosomal localization of foreign genes in Petunia hybrida. Mol Gen Genet 202:6–15.CrossRefGoogle Scholar
  24. 24.
    Chyi Y-S, Jorgensen RA, Goldstein D, Tanksley SD, Loaeza-Figueroa F (1986) Location and stability of Agrobacterium mediated T-DNA insertion in the Lycopersicon genome. Mol Gen Genet 204:64–69.CrossRefGoogle Scholar
  25. 25.
    An G, Watson BD, Chiang CC (1986) Transformation of tobacco, tomato, potato and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol 81:301–305.PubMedCrossRefGoogle Scholar
  26. 26.
    De Cleene M, De Ley J (1976) The host range of Crown Gall. Bot Rev 42:389–466.CrossRefGoogle Scholar
  27. 27.
    De Cleene M (1985) The susceptibility of monocotyledons to Agrobacterium tumefaciens. Phytopath Z 113:81–89.CrossRefGoogle Scholar
  28. 28.
    Graves ACF, Goldman SL (1986) The transformation of Zea mays seedlings with A. tumefaciens. Plant Mol Biol 7:43–50.CrossRefGoogle Scholar
  29. 29.
    Montoya AL, Chilton M-D, Gordon MP, Sciaky D, Nester EW (1977) Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall tumors. J Bact 129:101–107.PubMedGoogle Scholar
  30. 30.
    Panagopoulos CG, Psallidas PG (1973) Characteristics of Greek isolates of Agrobacterium tumefaciens. J Appl Bact 36:233–240.Google Scholar
  31. 31.
    Anderson AR, Moore L (1979) Host specificity of the genus Agrobacterium. Phytopathology 69:320–324.CrossRefGoogle Scholar
  32. 32.
    Schmidhauser TJ, Helinski DR (1985) Regions of broad-host-range plasmid RK2 involved in replication and stable maintenance in nine species of gram-negative bacteria. J Bact 164:446–455.PubMedGoogle Scholar
  33. 33.
    Yadav NS, Vanderleyden J, Bennett DR, Barnes WM, Chilton M-D (1982) Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc Natl Acad Sci USA 79:6322–6326.PubMedCrossRefGoogle Scholar
  34. 34.
    Jen GC, Chilton M-D (1986) The right border region of pTiT37 T-DNA is intrinsically more active than the left border region in promoting T-DNA transformation. Proc Natl Acad Sci US A 83:3895–3899.CrossRefGoogle Scholar
  35. 35.
    An G (in press) Binary Ti vectors for plant transformation and promoter analysis. Methods Enzymol.Google Scholar
  36. 36.
    An G, Ebert PR, Yi B-Y, Choi C-H (1986) Both TATA box and upstream regions are required for the nopaline synthase promoter activity in transformed tobacco cells. Mol Gen Genet 203:245–250.CrossRefGoogle Scholar
  37. 37.
    An G (1986) Development of plant promoter expression vectors and their use for analysis of differential activity of nopaline synthase promoter in transformed tobacco cells. Plant Physiol 81:86–91.PubMedCrossRefGoogle Scholar
  38. 38.
    Odell JT, Nagy C, Chua N-H (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812.PubMedCrossRefGoogle Scholar
  39. 39.
    Green PJ, Pines O, Inouye M (1986) The role of antisense RNA in gene regulation. Ann Rev Biochem 55:569–597.PubMedCrossRefGoogle Scholar
  40. 40.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497.CrossRefGoogle Scholar
  41. 41.
    Evans DA, Sharp WR, Ammirato PV, Yamata Y (1983) Handbook of Plant Cell Culture, Vol. 1. New York: Macmillan Publishing Co.Google Scholar
  42. 42.
    Holsters M, de Waele D, Depicker A, Messens E, Van Montagu M, Schell J (1978) Transfection and transformation of A. tumefaciens. Mol Gen Genet 163:181–187.PubMedCrossRefGoogle Scholar
  43. 43.
    Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range cloning system for gram negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351.PubMedCrossRefGoogle Scholar
  44. 44.
    Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523.PubMedCrossRefGoogle Scholar
  45. 45.
    Marton L, Wullems G, Molendijk L, Schilperoort RA (1979) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens. Nature 277:129–131.CrossRefGoogle Scholar
  46. 46.
    Marks DM, Feldmann KA (1986) Transformation of Arabidopsis by a method that does not require tissue cultures: analysis of progeny. Fallen Leaf Lake Conference, abstract.Google Scholar
  47. 47.
    Pollock K, Barfield DG, Robinson SJ, Shields R (1985) Transformation of protoplast derived cell colonies and suspension cultured cells by A. tumefaciens. Plant Cell Rep 4:202–205.CrossRefGoogle Scholar
  48. 48.
    Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers, Dordrecht 1989

Authors and Affiliations

  • Gynheung An
    • 1
  • Paul R. Ebert
    • 1
  • Amitava Mitra
    • 1
  • Sam B. Ha
    • 1
  1. 1.Institute of Biological Chemistry and Plant Physiology ProgramWashington State UniversityPullmanUSA

Personalised recommendations