Computed Potential Energy Surfaces for Chemical Reactions

  • Stephen P. Walch
  • Celeste McMichael Rohlfing
Part of the NATO ASI Series book series (ASIC, volume 277)


The results of multireference singles and doubles CI calculations of potential energy surfaces for hydrogen atom addition to O2, N2, and NO and recombination of OH + O are discussed. The errors due to the use of externally contracted CI and due to the neglect of correlation of O 2s and N 2s electrons are analyzed. Similarities and differences between the surfaces for the addition reactions are discussed. The calculated HN2 addition surface is used in a simple dynamical treatment (one-dimensional tunneling through an Eckart barrier) to estimate the lifetime of the HN2 species. The OH + O recombination potential is found to exhibit complex features which require that electrostatic forces (dipole-quadrupole) and chemical forces be treated consistently.


Potential Energy Surface Minimum Energy Path Atom Addition CASSCF Calculation Electron Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.P. Walch and L.B. Harding, J. Chem. Phys. 88, 7653 (1988).CrossRefGoogle Scholar
  2. 2.
    S.P. Walch, J. Chem. Phys. 86, 5670 (1987).CrossRefGoogle Scholar
  3. 3.
    S.P. Walch, C.M. Rohlfing, C.F. Melius, and C.W. Bauschlicher, Jr., J. Chem. Phys. 88, 6273 (1988).CrossRefGoogle Scholar
  4. 4.
    T.H. Dunning, Jr, S.P. Walch, and M.M. Goodgame, J. Chem. Phys. 74, 3482 (1981) and references therein.CrossRefGoogle Scholar
  5. 5.
    S.P. Walch, R.J. Duchovic, and C.M. Rohlfing, J. Chem. Phys. submitted.Google Scholar
  6. 6.
    L.A. Curtiss, D.L. Drapcho, and J.A. Pople, Chem. Phys. Lett. 103, 437 (1984).CrossRefGoogle Scholar
  7. 7.
    S.P. Walch, C.M. Rohlfing, and C.F. Melius, J. Chem. Phys. to be published.Google Scholar
  8. 8.
    A. Heiberg and J. Almlöf, Chem. Phys. Lett. 85, 542 (1982) and references therein.CrossRefGoogle Scholar
  9. 9.
    O. Nomura, S. Ikuta, and A. Iguwa, in “Applied Quantum Chemistry”, edited V.H. Smith, Jr., H.F. Schaefer III, and K. Morokuma (Reidel, 1984), p 243.Google Scholar
  10. 10.
    G.F. Adams and G.D. Bent, U.S. Army Ballistic Research Laboratory Technical Report (BRL-TR-2737), June 1986.Google Scholar
  11. 11.
    M.C. Colton and G.C. Schatz, J. Chem. Phys. 83, 3413 (1985).CrossRefGoogle Scholar
  12. 12.
    S.P. Walch and R.L. Jaffe, J. Chem. Phys. 86, 6946 (1987).CrossRefGoogle Scholar
  13. 13.
    J. Almlöf and P.R. Taylor, J. Chem. Phys. 86, 4070 (1987).CrossRefGoogle Scholar
  14. 14.
    T. Joseph, D.G. Truhlar, and B.C. Garrett, J. Chem. Phys. 88, 6982 (1988)CrossRefGoogle Scholar
  15. 15.
    P.E.M. Siegbahn, Int. J. Quantum Chem. 23, 1869 (1983).CrossRefGoogle Scholar
  16. 16.
    J. Almlöf, Molecule, a vectorized Gaussian integral program.Google Scholar
  17. 17.
    SWEDEN is a vectorized SCF-MCSCF-direct CI-conventional CI-CPF-MCPF program written by P.E.M. Siegbahn, C.W. Bauschlicher, Jr., B. Roos, P.R. Taylor, A. Heiberg, J. Almlöf, S.R. Langhoff, and D.P. Chong.Google Scholar
  18. 18.
    L.G.S. Shum and S.W. Benson, J. Phys. Chem. 87, 3478 (1983).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Stephen P. Walch
    • 1
  • Celeste McMichael Rohlfing
    • 2
  1. 1.Eloret InstituteSunnyvaleUSA
  2. 2.Sandia National LaboratoriesLivermoreUSA

Personalised recommendations