Skip to main content

Modern Electronic Structure Calculations: The Accurate Prediction of Spectroscopic Band Origins

  • Chapter
  • 130 Accesses

Part of the book series: NATO ASI Series ((ASIC,volume 277))

Abstract

Derivative theory has been one of major advances in quantum chemistry in recent years, enabling the quantum chemist to make valuable predictions in the area of microwave and infrared spectroscopy. Here it is argued that a high accuracy model for predictive quantum chemistry is MP2 with sufficiently large basis sets (TZ2p+ f), for which it is possible today to calculate analytic second derivatives. Harmonic frequencies are often accurate to 1% in this model. If analytic SCF third derivatives together with finite difference fourth derivatives are also available, it is then possible to extend the model to the prediction of band origins. Small scaling procedures are suggested which yield an accuracy of the order of 15cm-1. Supporting calculations are presented, including an incomplete study of H2O2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.J. Hehre, L. Radom, P.v.R. Schleyer and J.A. Pople, Ab Initio Molecular Orbital Theory, 1986, Wiley, New York.

    Google Scholar 

  2. J.A. Pople, R. Krishnan, H.B. Schlegel and J.S. Binkley, Int. J. Quant. Chem. Symp., 1979, 13, 225.

    CAS  Google Scholar 

  3. E.D. Simandiras, N.C. Handy and R.D. Amos, Chem. Phys. Lett., 1987, 133, 324.

    Article  CAS  Google Scholar 

  4. J. Gerratt and I. Mills, J. Chem. Phys., 1968, 49, 1219.

    Google Scholar 

  5. N.C. Handy and H.F. Schaefer, J. Chem. Phys., 1984, 81, 5031.

    Article  CAS  Google Scholar 

  6. Geometrical Derivatives of Energy Surfaces and Molecular Properties, ed. P. Jorgensen and J. Simons, NATO ASI series 166, 1986, D. Reidel, Dordrecht.

    Google Scholar 

  7. N.C. Handy, R.D. Amos, J.F. Gaw, J.E. Rice and E.D. Simandiras, Chem. Phys. Lett., 1985, 120, 151.

    Article  CAS  Google Scholar 

  8. The Cambridge Analytic Derivatives Package, Issue 4.0., R.D. Amos and J.E. Rice, 1987.

    Google Scholar 

  9. E.D. Simandiras, J.E. Rice, T.J. Lee, R.D. Amos and N.C. Handy, J. Chem. Phys., 1988, 88, 3187.

    Article  CAS  Google Scholar 

  10. J.F. Gaw, Y. Yamaguchi and H.F. Schaefer, J. Chem.Phys., 1985, 81, 6395.

    Article  Google Scholar 

  11. N.C. Handy, J.F. Gaw and E.D. Simandiras, J. Chem. Soc. Far. Trans. 2, 1987, 83, 1577.

    Article  CAS  Google Scholar 

  12. E.D. Simandiras, Ph.D. Thesis, University of Cambridge, 1988.

    Google Scholar 

  13. I.L. Alberts and N.C. Handy, J. Chem. Phys., 1988, 89, 2041.

    Article  Google Scholar 

  14. D.A. Clabo, W.D. Allen, R.B. Remington, Y. Yamaguchi and H.F. Schaefer, 1988, 123, 187.

    Google Scholar 

  15. P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs and A. Vargha, J. Am. Chem. Soc., 1983, 105, 7037.

    Article  CAS  Google Scholar 

  16. H.B. Schlegel, J. Chem. Phys., 1986, 84, 4530

    Article  CAS  Google Scholar 

  17. P.J. Knowles and N.C. Handy, J. Chem. Phys., 1988, 88, 6991; L. Radom and J.A. Pople, J. Chem. Phys., 1988.

    Article  CAS  Google Scholar 

  18. T.J. Lee, J.E. Rice, G.E. Scuseria and H.F. Schaefer, Theor. Chim. Acta, 1989.

    Google Scholar 

  19. M. Page, P. Saxe, G.F. Adams and B.H. Lengsfield, Chem. Phys. Lett., 1984, 107, 587.

    Article  Google Scholar 

  20. T.H. Dunning, J. Chem. Phys., 1970, 53, 2823;

    Article  CAS  Google Scholar 

  21. S. Huzinaga, J. Chem. Phys., 1965, 42, 1293.

    Article  Google Scholar 

  22. SPECTRO, a theoretical spectroscopy package. A. Willetts and J.F. Gaw, Cambridge, 1988.

    Google Scholar 

  23. J. Koput, J. Molec. Spectrosc., 1986, 115, 438.

    Article  CAS  Google Scholar 

  24. S. Carter and N.C. Handy, Comp. Phys. Comm., 1988.

    Google Scholar 

  25. A.R. Hoy, F.M. Mills and G. Strey, Molec. Phys., 1972, 24, 1265.

    Article  CAS  Google Scholar 

  26. W.S. Benedict and E.K. Plyler, Can. J. Phys., 1957, 35, 1235.

    Article  CAS  Google Scholar 

  27. D.L. Gray and A.G. Robiette, Molec. Phys., 1979, 37, 1901.

    Article  CAS  Google Scholar 

  28. K. Yamada, T. Nakagawa, K. Kuchitsu and Y. Morino, J. Molec. Spectrosc., 1971, 38, 70.

    Article  CAS  Google Scholar 

  29. G. Winnewisser, A.G. Maki and D.R. Johnson, J. Molec. Spectrosc., 1971, 39, 149.

    Article  CAS  Google Scholar 

  30. A. Baldacci, S. Ghersetti, S.C. Hurlock and K. N. Rao, J. Mol. Struct., 1976, 59, 116.

    CAS  Google Scholar 

  31. T. Nakanaga, S. Kondo and S. Saeki, J. Chem. Phys., 1982, 76, 3860.

    Article  CAS  Google Scholar 

  32. G. Strey and I. M. Mills, J. Mol. Struct., 1976, 59, 103.

    CAS  Google Scholar 

  33. G. Strey and I. M. Mills, Molec. Phys., 1973, 26, 129.

    Article  CAS  Google Scholar 

  34. J.L. Duncan and P.D. Mallinson, Chem. Phys. Lett., 1973, 23, 597

    Article  CAS  Google Scholar 

  35. D.E. Reisner, R.W. Field, J.L. Kinsey and H.-L. Dai, J. Chem. Phys., 1984, 80, 5968.

    Article  CAS  Google Scholar 

  36. J.L. Duncan, D.C. McKean and P.D. Mallinson, J. Molec. Spectrosc., 1973, 45, 221.

    Article  CAS  Google Scholar 

  37. I. M. Mills and A.G. Robiette, Molec. Phys., 1985, 56, 743.

    Article  CAS  Google Scholar 

  38. J. Pliva, V. Spirko and D. Papousek, J. Mol. Spectrosc., 1967, 23, 331.

    Article  CAS  Google Scholar 

  39. D. Van Lerberghe, I.J. Wright and J.L. Duncan, J. Molec. Spectrosc., 1972, 42, 251.

    Article  Google Scholar 

  40. R.L. Redington, W. B. Olson and P.C. Cross, J. Chem. Phys., 1962, 36, 1311.

    Article  CAS  Google Scholar 

  41. P.A. Giguere and T.K.K. Srinivasan, J. Raman. Spectr., 1974, 2, 125.

    Article  CAS  Google Scholar 

  42. P. Pulay (comment at Jerusalem International Quantum Molecular Science meeting, 1988).

    Google Scholar 

  43. R.D. Amos, J.F. Gaw, N.C. Handy, E.D. Simandiras and K. Somasundram, Theor. Chim. Acta, 1987, 71, 41.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Handy, N.C. (1989). Modern Electronic Structure Calculations: The Accurate Prediction of Spectroscopic Band Origins. In: Laganà, A. (eds) Supercomputer Algorithms for Reactivity, Dynamics and Kinetics of Small Molecules. NATO ASI Series, vol 277. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0945-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0945-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6915-1

  • Online ISBN: 978-94-009-0945-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics