Investigations with the Finite Element Method. The collinear H + H2, F + H2 and Ne + H+2 reactions

  • Ralph Jaquet
Part of the NATO ASI Series book series (ASIC, volume 277)


We are investigating systematic the application of the finite element method (FEM) for solving the Schrödinger equation. The subsequent work is devoted to the calculation of vibrational transition probabilities for the collinear reactive system A + BC (i.e. H + H 2 and their isotopes, F + H 2 and Ne + H + 2). We have performed an extensive analysis of FEM on the vector-computer Cyber 205 and have developed a vector code for the efficient use in two mathematical dimensions. The implementation of a three dimensional program is now in progress. The details of our FEM calculations are the following: The integration area is discretized into triangles where quadratic polynomials for the local wavefunctions are defined. With this simple ansatz convergent results can be reached for most reactions with ≈ 10000 grid points. In case of 3D calculations a much larger number of grid points is necessary. Different 1D–3D eigenvalue problems with higher degree polynomials are investigated to reduce the number of grid points and to optimize the geometry of the finite elements. Applying this experience to reactive problems, much less grid points will be needed for comparable accuracy. The main computing time results from solving linear equations and generalized eigenvalue equations for very large, but sparse matrices. Direct methods (e.g. Cholesky or Jacobi ) are needed for starting, and if good starting vectors are available, iterative methods (e.g. conjugated gradients or coordinate overrelaxation ) can be used.


Finite Element Method Grid Point Integration Area Stationary Wavefunction Finite Element Method Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.a)
    D.C. Clary, The theory of chemical reaction dynamics, Reidel, Dordrecht, 1986.Google Scholar
  2. b).
    R.B. Bernstein, Atom-molecule collision theory, Plenum Press, New York, 1979.Google Scholar
  3. c).
    M. Baer, Theory of chemical reaction dynamics, I-IV, CRC Press, Boca Raton, 1985Google Scholar
  4. 2.a)
    A. Kuppermann and G.C. Schatz, J. Chem. Phys., 62 (1975) 2502.CrossRefGoogle Scholar
  5. b).
    G.C. Schatz and A. Kuppermann, J. Chem. Phys., 65 (1976) 4642, 4668.CrossRefGoogle Scholar
  6. c).
    G.C. Schatz and A. Kuppermann, Phys. Rev. Lett., 35 (1975) 1266CrossRefGoogle Scholar
  7. 3.a)
    A.B. Elkowitz and R.E. Wyatt, J. Chem. Phys., 62 (1975) 2504; 63 (1975) 702.CrossRefGoogle Scholar
  8. b).
    M.J. Redmon and R.E. Wyatt, Chem. Phys. Let. 63 (1979) 209CrossRefGoogle Scholar
  9. 4.a)
    R.B. Walker, E.B. Stechel and J.C. Light, J. Chem. Phys 69 (1978) 2922.CrossRefGoogle Scholar
  10. b).
    F. Webster and J.C. Light, J. Chem. Phys., 85 (1986) 4744CrossRefGoogle Scholar
  11. 5.a)
    A. Kuppermann and P.G. Hipes, J. Chem. Phys., 84 (1986) 5962.CrossRefGoogle Scholar
  12. b).
    P.G. Hipes and A. Kuppermann, Chem. Phys. Let., 133 (1987) 1CrossRefGoogle Scholar
  13. 6.a)
    K. Haug, D.W. Schwenke, Y. Shima, D.G. Truhlar, J. Zhang, and D.J. Kouri, J. Phys. Chem., 90 (1986) 6757.CrossRefGoogle Scholar
  14. b).
    J.Z.H. Zhang, D.J. Kouri, K. Haug, D.W. Schwenke, Y. Shima, and D.G. Truhlar, J. Chem. Phys., 88 (1988) 2492.CrossRefGoogle Scholar
  15. 7.
    .M. Baer, J. Phys. Chem., 91 (1987) 5846.CrossRefGoogle Scholar
  16. 8.a)
    J.Z.H. Zhang and W.H. Miller, Chem. Phys. Let., 140 (1987) 329.CrossRefGoogle Scholar
  17. b).
    J.Z.H. Zhang, S.-I. Chu, and W.H. Miller, J. Chem. Phys., 88 (1988) 6233CrossRefGoogle Scholar
  18. 9.a)
    R.T. Pack and G.A. Parker, J. Chem. Phys., 87 (1987) 3888.CrossRefGoogle Scholar
  19. c).
    C.A. Parker, R.T. Pack, B.J. Archer, and R.B. Walker, Chem. Phys. Let., 137 (1987) 564CrossRefGoogle Scholar
  20. 10.
    J. Linderberg, B. Vessal, Int. J. Quant. Chem., 31 (1987) 65CrossRefGoogle Scholar
  21. 11.
    H.R. Schwarz, Methode der finiten Elemente, Teubner, Stuttgart, 1980Google Scholar
  22. 12.
    K.J. Bathe, E.L. Wilson, Numerical methods infinite element analysis, Prentice Hall, Englewood Cliffs, New Jersey, 1977Google Scholar
  23. 13.
    R. Gruber, Finite elements in physics, Graduate Summer course on Comp. Physics, 1-10 Sept. 1986, EPF LausanneGoogle Scholar
  24. 14.
    H. Rabitz, A. Askar and A. Cakmak, Chem. Phys., 29 (1978) 61CrossRefGoogle Scholar
  25. 15.
    A. Askar, A. Cakmak and H. Rabitz, Chem. Phys., 33 (1978) 267CrossRefGoogle Scholar
  26. 16.
    M. Duff, H. Rabitz, A. Askar, A. Cakmak and M. Ablowitz, J. Chem. Phys., 72 (1980) 1543CrossRefGoogle Scholar
  27. 17.
    R. Jaquet, Theor. Chim. Acta, 71 (1987) 425CrossRefGoogle Scholar
  28. 18.
    R. Jaquet, Chem. Phys., 118 (1987) 17CrossRefGoogle Scholar
  29. 19.
    R. Jaquet, Habilitationsschrift, Univ. Siegen (1987)Google Scholar
  30. 20.
    A. Askar, H. Rabitz, J. Chem. Phys., 80 (1984) 3586CrossRefGoogle Scholar
  31. 21.
    R. Diekkämper, Proceedings of the 1983 Conferences on Cyber 200 in Bochum, ed. by H. Ehlich, K.-H. Schloßer (1983)Google Scholar
  32. 22.
    A. Kuppermann, J.A. Kaye and J.P. Dwyer, Chem. Phys. Let., 74 (1980) 257CrossRefGoogle Scholar
  33. 23.
    J. Römelt, Chem. Phys. Let., 74 (1980) 263CrossRefGoogle Scholar
  34. 24.
    J. Römelt, Chem. Phys., 79 (1983) 197CrossRefGoogle Scholar
  35. 25.
    D.K. Bondi and J.N.L. Connor, J. Chem. Phys., 82 (1985) 4383CrossRefGoogle Scholar
  36. 26.
    J.C. Light, R.B. Walker, J. Chem. Phys., 65 (1976) 4274Google Scholar
  37. 27.
    J. Römelt, Chem. Phys. Let, 87 (1982) 259CrossRefGoogle Scholar
  38. 28.
    G.C. Schatz, J.M. Bowman and A. Kuppermann, J. Chem. Phys., 58 (1973) 4023CrossRefGoogle Scholar
  39. 29.
    J.T. Adams, R.L. Smith and E.F. Hayes, J. Chem. Phys., 61 (1974) 2193CrossRefGoogle Scholar
  40. 30.
    J.N.L. Connor, W. Jakubetz and J. Manz, Mol. Phys., 35 (1978) 1301; 39 (1980) 799CrossRefGoogle Scholar
  41. 31.a)
    B. Lepetit, J.M. Launay, M. LeDourneuf, J. Phys. B: At. Mol. Phys., 19 (1986) 2779.CrossRefGoogle Scholar
  42. b).
    J.M. Launay and M. LeDoumeuf, J. Phys. B, 15 (1982) L455CrossRefGoogle Scholar
  43. 32.
    V. Staemmler and R. Jaquet, Theor. Chim. Acta, 59 (1981) 487CrossRefGoogle Scholar
  44. 33.
    Z. Herman and I. Koyano, J. Chem. Soc., Farad. Trans 2, 83 (1987) 127CrossRefGoogle Scholar
  45. 34.
    C. Stroud and L.M. Raff, Chem.Phys., 46 (1980) 313CrossRefGoogle Scholar
  46. 35.
    E.F. Hayes, A.K.Q. Siu, F.M. Chapman Jr., and R.L. Matcha, J. Chem. Phys., 65 (1976) 1901CrossRefGoogle Scholar
  47. 36.
    V. Staemmler, J. Urban, and R. Jaquet, to be publishedGoogle Scholar
  48. 37.
    J.O. Hirschfelder and K.T. Tang, J. Chem. Phys., 64 (1976) 760CrossRefGoogle Scholar
  49. 38.
    R. Jaquet, eigenvalue problems in be publishedGoogle Scholar
  50. 39.
    I.P. Hamilton and J.C. Light, J. Chem. Phys., 84 (1986) 306CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Ralph Jaquet
    • 1
  1. 1.Theoretische ChemieUniversität SiegenSiegenWest-Germany

Personalised recommendations