Advertisement

Computer Simulation Studies of Fe1-xO and Mn1-xO

  • S. M. Tomlinson
  • C. R. A. Catlow
Part of the NATO ASI Series book series (ASIC, volume 276)

Abstract

We show how a combination of static simulation techniques and a mass-action treatment of defect equilibria may be used to study the defect structure of Mn1-xO, and to calculate the variation of x with p(O2). We find a defect model including 4:1 clusters with a variety of charge states may reproduce the observed behaviour. For Fe1-xO we update our last survey of defect cluster stabilities, and find the 12:4 cluster remains the favoured large defect aggregate. We also show that inter-defect interactions will favour the formation of defect clusters. Lastly, we use the mass-action method to show how the slightly higher binding energies of clusters in Fe1-xO, may account for the difference in behaviour of the two oxides.

Keywords

Interaction Energy Charge State Defect Model Lattice Energy Cation Vacancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tomlinson S.M., Catlow C.R. A. and Harding J.H., in “Transport in Nonstoichiometric Compounds”, eds. Simkovich and Stubican, NATO ASI Series B: Physics, Vol. 129, Plenum Press, New York (1985).Google Scholar
  2. 2.
    Catlow C.R.A., Ann. Rev. of Mat. Sci., 16, 517 (1986).CrossRefGoogle Scholar
  3. 3.
    Catlow C.R.A. and Mackrodt W.C., “Computer Simulation of Solids”, Springer-Verlag, Berlin (1982).CrossRefGoogle Scholar
  4. 4.
    Dick B.G. and Overhauser A.W., Phys. Rev., 112, 90, (1958).CrossRefGoogle Scholar
  5. 5.
    Mott N.F. and Littleton M.J., Trans. Farad. Soc., 34, 485 (1938).CrossRefGoogle Scholar
  6. 6.
    Catlow C.R.A., James R., Mackrodt W.C. and Stewart R.F., Phys. Rev. B, 25, 1006 (1982).CrossRefGoogle Scholar
  7. 7.
    Norgett M.J., AERE Harwell Report, R7650 (1974).Google Scholar
  8. 8.
    Ball R. and Harding J.H., AERE Harwell Report, M3294 (1983).Google Scholar
  9. 9.
    Harding J.H., Physica B+C, 131, 13 (1985).CrossRefGoogle Scholar
  10. 10.
    Murray A.D., PhD Thesis, University of London (1985).Google Scholar
  11. 11.
    Jackson R.A., Murray A.D., Harding J.H. and Catlow C.R.A., Phil. Mag. A, 53, 27 (1986).CrossRefGoogle Scholar
  12. 12.
    Thirlby P., unpublished work (1983).Google Scholar
  13. 13.
    Tomlinson S.M., PhD Thesis, University of London (1987).Google Scholar
  14. 14.
    Keller M. anad Dieckmann R., Ber. Bunsenges. Phys. Chem., 89, 883 (1985).Google Scholar
  15. 15.
    Tomlinson S.M., Catlow C.R.A. and Harding J.H., J. Phys. Chem. Solids, to be submitted (1988).Google Scholar
  16. 16.
    Lebreton C. and Hobbs L.W., Radiation Effects, 74, 227 (1983).CrossRefGoogle Scholar
  17. 17.
    Anderson A.B., Grimes R.W. and Heuer A.H., J. Solid State Chem., 55, 353 (1984).CrossRefGoogle Scholar
  18. 18.
    Gartstein E., Mason T.O. and Cohen J.B. in Advances in Ceramics, vol. 23: Nonstoichiometric Compounds, eds. Catlow C.R.A. and Mackrodt W.C. (1987).Google Scholar
  19. 19.
    Gartstein E. and Mason T.O., J. Am. Ceram. Soc, 65, C24 (1982).CrossRefGoogle Scholar
  20. 20.
    Hillegas W.J., PhD Thesis, Northwestern University, U.S.A. (1968).Google Scholar
  21. 21.
    Koch F. and Cohen J.B., Acta Cryst., B25, 275 (1969).Google Scholar
  22. 22.
    Cormack A.N. in “Computer Simulation of Solids”, Springer-Verlag, Berlin (1982).Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • S. M. Tomlinson
    • 1
  • C. R. A. Catlow
    • 1
  1. 1.Department of ChemistryUniversity of KeeleStaffordshireUK

Personalised recommendations