Advertisement

Defect Interactions, Extended Defects and Non-Stoichiometry in Ceramic Oxides

  • A. N. Cormack
Part of the NATO ASI Series book series (ASIC, volume 276)

Abstract

Non-stoichiometry in ceramic oxides is usually accommodated structurally through the incorporation of lattice defects. Except in regions very close to stoichiometry, these point defects tend to aggregate into clusters, or extended defects. In this presentation we discuss the energetics of the interactions giving rise to these extended defects from the point of view of atomistic computer-based simulations.

Keywords

Point Defect Extended Defect Defect Pair Defect Interaction Anion Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.M. Tomlinson, C.R.A. Catlow and J.H. Harding, in: “Transport in Non-Stoichiometric Compounds”, eds. G. Simkovich and V.S. Stubican, pp 539–550, Plenum Press NY (1985).Google Scholar
  2. 2.
    A.M. Stoneham and P.J. Durham, J. Phys. Chem. Solids 34, 2127 (1973).CrossRefGoogle Scholar
  3. 3.
    A.N. Cormack, C.R.A. Catlow and P.W.Tasker, Rad. Effects, 74, 237 (1983).CrossRefGoogle Scholar
  4. 4.
    A.N. Cormack, C.M. Freeman, R.L. Royle and C.R.A. Catlow, in: “Non-Stoichiometric Compounds”, eds. C.R.A. Catlow and W.C Mackrodt, Adv. in Ceramics, 23, 307–329 (1987).Google Scholar
  5. 5.
    A. Dwivedi and A.N. Cormack, in preparation.Google Scholar
  6. 6.
    C.R.A. Catlow, A.V. Chadwick, A.N. Cormack, G.N. Greaves, M. Leslie and M.L. Moroney, in: “Defect Properties and Processing of High-Technology Ceramics”, MRS Symposia Proc. 60, 173–178 (1986).Google Scholar
  7. 7.
    J.G. Allpress and J.H. Rossell, J. Solid State Chem. 15, 68–78 (1975).CrossRefGoogle Scholar
  8. 8.
    J.R. Hellman and V.S. Stubican, J. Amer. Ceram. Soc. 66, 260–264 (1983).CrossRefGoogle Scholar
  9. 9.
    A. Dwivedi and A.N. Cormack, in preparation.Google Scholar
  10. 10.
    Y.H. Han, M.P. Harmer, Y.H. Hu and D.M. Smyth, in: “Transport in Non-Stoichiometric Compounds”, eds. G.Simkovich and V.S. Stubican, pp 73–85, Plenum Press, NY (1985).Google Scholar
  11. 11(a).
    S.N. Ruddlesden and P. Popper, Acta Crystallogr. 10, 538–539 (1957);CrossRefGoogle Scholar
  12. 11(b).
    S.N. Ruddlesden and P. Popper, Acta Crystallogr. 11, 54–55 (1958).CrossRefGoogle Scholar
  13. 12.
    R.J.D. Tilley, J. Solid State Chem. 21, 293–301 (1977).CrossRefGoogle Scholar
  14. 13.
    K.R. Udayakumar and A.N. Cormack, J. Phys. Chem. Solids, in press (1988).Google Scholar
  15. 14.
    K.R. Udayakumar and A.N. Cormack, J. Amer. Ceram. Soc. Communications, in press (1988).Google Scholar
  16. 15(a).
    J-C. Grenier, F. Menil, M. Pouchard and P. Hagenmuller, J. Solid State Chem. 20, 365–379 (1977);CrossRefGoogle Scholar
  17. 15(b).
    J-C. Grenier, F. Menil, M. Pouchard and P. Hagenmuller, Mat. Res. Bull. 13, 329–337 (1978).CrossRefGoogle Scholar
  18. 16.
    R. Ward and A. N. Cormack, unpublished results.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • A. N. Cormack
    • 1
  1. 1.New York State College of CeramicsAlfred UniversityAlfredUSA

Personalised recommendations