Influence of Point Defects on the Near-Surface Diffusion in some Oxide Systems

  • V. S. Stubican
  • C. M. Lin
Part of the NATO ASI Series book series (ASIC, volume 276)


Diffusion of the 57Co isotope on Fe3O4 (110) and NiO (100) surfaces was investigated by the edge-source method. The surface diffusion parameter, αDsδ, where α is the segregation factor, Ds, the surface diffusion coefficient, and δ the thickness of the high-diffusivity layer, was determined at 750° for different partial pressures of oxygen. In both cases point defects strongly influenced surface diffusion. For Fe3O4 the vacancy mechanism is dominant at high oxygen activities and interstitial (or interstitialcy) mechanism dominates at low oxygen activities. For NiO the surface diffusion at low oxygen activities is influenced by aliovalent impurities and at high oxygen activities the strong influence of the intrinsic defects, nickel vacancies, on surface diffusion was observed. It was concluded that the similar mechanisms operate during surface diffusion in the near surface layer and during diffusion in the lattice.


Oxygen Partial Pressure Surface Diffusion Volume Diffusion High Oxygen Partial Pressure Surface Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. P. Bonzel in Surface Mobilities on Solid Materials, Ed. Vu Thien Binh, Plenum Press, New York, NY, 1083, p. 195.Google Scholar
  2. 2.
    I. N. Stranski, Z. Phys. Chem., 136, 259 (1928).Google Scholar
  3. 3.
    J. M. Blakely, in Progress in Materials Science, Vol. 10, Ed. B. Chalmers, Pergamon Press, New York, NY, 1961, p. 395.Google Scholar
  4. 4.
    V. A. Gjostein, in Surface and Interfaces I, Ed. T. T. Burke, Syracuse University Press, Syracuse NY, 1967, p. 271.Google Scholar
  5. 5.
    J. Y. Choi and P. G. Shewmon, Trans. AIME, 224, 589 (1962).Google Scholar
  6. 6.
    C. E. Birchendall, Trans. AIME, 227, 781 (1963).Google Scholar
  7. 7a.
    V. S. Stubican, G. Huzinec and D. Damjanovic, J. Am. Ceram. Soc., 68, 181 (1985)CrossRefGoogle Scholar
  8. 7b.
    C. M. Lin and V. S. Stubican, J. Am Ceram. Soc., 70, C-73 (1987).CrossRefGoogle Scholar
  9. 8.
    R. T. Whipple, Phil. Mag., 45, 1225 (1954).Google Scholar
  10. 9.
    A. D. LeClaire, Br. J. Appl. Phys., 14, 351 (1963).CrossRefGoogle Scholar
  11. 10.
    R. Dieckmann and H. Schmalzried, Ber. Bunsenges. Physik. Chem., 81, 344 (1977).Google Scholar
  12. 11.
    R. Dieckmann and H. Schmalzried, Ber. Bunsenges. Physik. Chem., 81, 414 (1977).Google Scholar
  13. 12.
    U. L. Volpe and J. Reddy, J. Chem. Phys., 53, 1117 (1970).CrossRefGoogle Scholar
  14. 13a.
    R. Fahri and G. Petot-Ervas, J. Phys. Chem. Solids, 39, 1169 (1978)CrossRefGoogle Scholar
  15. 13b.
    R. Fahri and G. Petot-Ervas, J. Phys. Chem. Solids, 39, 1175 (1978).CrossRefGoogle Scholar
  16. 14.
    A. Atkinson, A. E. Hughes and A. Hammon, Phil. Mag. A43, 1071 (1981).CrossRefGoogle Scholar
  17. 15.
    N. L. Peterson and C. L. Wiley, J. Phys. Chem. Solids, 46, 43 (1985).CrossRefGoogle Scholar
  18. 16.
    J. Nowotny and M. Rekas, Solid State Ionics, 12, 253 (1984).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • V. S. Stubican
    • 1
  • C. M. Lin
    • 1
  1. 1.The Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations