Oxygen Self-Diffusion in Volume and in Grain-Boundaries of Cu2−x O

  • F. Perinet
  • J. Le Duigou
  • C. Monty
Part of the NATO ASI Series book series (ASIC, volume 276)


Oxygen self-diffusion has been measured both in the bulk and in grain-boundaries of Cu2−x O as a function of temperature T (712°C–1100°C) and oxygen partial pressure, PO2(10−7–0.21 atm). The measured diffusion coefficients can be described by the expressions
$${D_0}\left( {c{m^2}{s^{ - 1}}} \right) = 2.2\,{10^{ - 3}}{P_{02}}{\left( {atm} \right)^{0.48 \mp 0.2}}\exp \left[ {\frac{{ - 1.46 \mp 0.18\left( {eV/at} \right)}} {{kT}}} \right]$$
in the bulk and
$${D'_0}\left( {c{m^2}{s^{ - 1}}} \right) = 8.\,13\,{10^{ - 2}}{P_{02}}{\left( {atm} \right)^{0.59 \mp 0.18}}\exp \left[ { - \frac{{ - 1.0 \mp 0.45\left( {eV/at} \right)}} {{kT}}} \right]$$
in grain-boundaries (if grain-boundary thickness δ = 1 nm). These results indicate that the same main defect, a neutral oxygen interstitial 0<Stack><Subscript>x</Subscript><Superscript>i</Superscript></Stack>, is responsible for the diffusion of oxygen both in the bulk and in grain-boundaries and that the sum of the formation and migration enthalpies for 0<Stack><Subscript>x</Subscript><Superscript>i</Superscript></Stack> is 1.5 eV in the bulk and around 1 eV in grain-boundaries.


Point Defect Diffusion Profile Oxygen Sublattice Measured Diffusion Coefficient Neutral Oxygen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    P. Kofstad Non stoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, Ed. Wiley Interscience, New York (1972).Google Scholar
  2. / 2/.
    R.J. Tarento, C. Monty “Influence of non stoichiometry on the oxygen self-diffusion in Co1−x O single crystals” Sol.Stat.Ionics (1988) to be published.Google Scholar
  3. / 3/.
    A. Atkinson “Grain-boundary diffus ion-Structural effects and mechanisms” Journal de Physique C4, 46 (1985).Google Scholar
  4. / 4/.
    A. Atkinson, F.C.W. Pummery, C. Monty “Diffusion of 18 0 tracer in NiO grain boundaries” in Transport in non stoichiometric compounds, Ed. G. Simkovitch, V.S. Stubican, Plenum (1985).Google Scholar
  5. / 5/.
    V.S. Stubican, J.W. Osenbach “Influence of anisotropy and doping on grain boundary diffusion in oxide systems”, Solid State Ionics 12, 375–381 (1984).CrossRefGoogle Scholar
  6. / 6/.
    F. Barbier, C. Monty, M. Dechamps “On the grain boundary diffusion of Co in NiO bicrystals” Phil. Mag. A58, 3, 475–490 (1988).Google Scholar
  7. / 7/.
    R.D. Schmidt-Whitley, M. Martinez-Clement, A. Revcolevschi “Growth and microstructural control of single crystal cuprous oxide Cu 2 O”, J. of Crystal Growth 23, 113–120 (1974).CrossRefGoogle Scholar
  8. / 8/.
    C. Dubois, C. Monty, J. Philibert “Oxygen self-diffusion in NiO single crystals” Phil. Mag. A, 46, 3, 419–433 (1982).CrossRefGoogle Scholar
  9. / 9/.
    J. Philibert “Diffusion et transport de matière dans les solides Ed. de Physique, France (1985).Google Scholar
  10. /10/.
    C. Monty “Diffusion in stoichiometric and non-stoichiometric cubic oxides”, Radiations effects, 74, 29–55 (1983).CrossRefGoogle Scholar
  11. /11/.
    A. Atkinson, R.I. Taylor “The diffusion of 63 Ni along grain boundaries in nickel oxide” Phil. Mag. A 43, 979 (1981).CrossRefGoogle Scholar
  12. /12/.
    P. Ochin, C. Petot, G. Petot-Ervas “Thermodynamic study of point defects in Cu 2− δ O. Electrical conductivity measurements at low oxygen partial pressures”. Solid State Ionics, 12, 135–143 (1984).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • F. Perinet
    • 1
  • J. Le Duigou
    • 1
  • C. Monty
    • 1
  1. 1.Laboratoire de Physique des MatériauxCNRSMeudon CedexFrance

Personalised recommendations