Advertisement

Short-Circuit Diffusion in α-Al2O3.

  • E. Moya
  • F. Moya
Part of the NATO ASI Series book series (ASIC, volume 276)

Abstract

Results concerning diffusion in αAl2O3 are reviewed, compared and discussed in terms of lattice defects, purity, doping, grain-boundary structure and chemistry. Some of the difficulties encountered in determining diffusion parameters are pointed out. Attention is paid to short-circuit diffusion, as penetration in the volume of αAl2O3 is negligible in most cases. Recent data for the silver -αAl2O3 system providing all parameters relative to bulk and dislocation and grain boundary diffusion, are analysed’ to gain a better understanding of the diffusion mechanisms involved in this system and, from analogy, in cationic diffusion in α-Al2O3.

Keywords

Boundary Diffusion Bulk Diffusion Migration Energy Chemical Diffusion Oxygen Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DIENES G.J., WELCH D.O., FISHER C.R., HATCHER R.D., LAZARETH D. and SAMBERG M., “Shell-model calculation of some point defect properties in α-Al2O3” — Phys. Rev. B, 11, 3060–3070, (1965)CrossRefGoogle Scholar
  2. 2.
    CATLOW C.R.R., JAMES R., MACKRODT W.C. and STEWART R.F., “Defect energies in α-Al2O3 and rutile TiO2” — Phys. Rev. B, 25, 1006–1026, (1982)CrossRefGoogle Scholar
  3. 3.
    MACKRODT W.C., “Defect energetics and their relation to non stoichiometry in oxides” — Solid State Ionics, 12, 175–188, (1984)CrossRefGoogle Scholar
  4. 4.
    EL AIAT M.M. and KROGER F.A., “Determination of the parameters of native disorder in α-Al2O3” — J. of the Am. Ceram. Soc., 65, 162–166 (1982)CrossRefGoogle Scholar
  5. 5.
    KROGER F.A., “Experimental and calculated values of defect parameters and the defect structure of -Al2O3” — Advances in Ceramics, 10, 100–118, (1984)Google Scholar
  6. 6.
    OISHI Y. and KINGERY W.D., “Self diffusion of oxygen in single crystal and polycrystalline aluminium oxide” — J. Chem. Phys., 33, 480–486, (1960)CrossRefGoogle Scholar
  7. 7.
    OISHI Y., ANDO K. and KUBOTA Y., “Self diffusion of oxygen in single crystal alumina” — J. Chem. Phys., 73, 1410–1412, (1980)CrossRefGoogle Scholar
  8. 8.
    OISHI Y., ANDO K., SUGA N. and KINGERY W.D., “Effect on surface condition on oxygen self-diffusion coefficients for single crystal A12O3” — J. Amer. Ceram. Soc., 66, C 130–131, (1983)Google Scholar
  9. 9.
    REED D.J. and WUENSCH B.J., “Ion probe measurement of oxygen self-diffusion in single crystal Al2O3” — J. Am. Ceram. Soc., 63, 88–92, (1980)CrossRefGoogle Scholar
  10. 10.
    REDDY K.P.R. and COOPER A.R., “Oxygen diffusion in Sapphire” — J. Amer. Ceram. Soc., 65, 634–638, (1982)CrossRefGoogle Scholar
  11. 11.
    LAGERLOF K.D.D., PLETKA B.J., MITCHELL T.E. and HEUER A.H., “Deformation and diffusion in sapphire” — Radiation effects, 74, 87–107, (1983)CrossRefGoogle Scholar
  12. 12.
    PALADINO A.E. and KINGERY W.D., “Aluminium ion diffusion in aluminium oxide” — J. Chem. Phys., 37, 957–962, (1962)CrossRefGoogle Scholar
  13. 13.
    CANNON R.M., RHODES W.H. and HEUER A.H., “Plastic deformation of fine grained alumina: I, Interface controlled diffusional creep” — J. Amer. Ceram. Soc., 63, 46–53, (1980)CrossRefGoogle Scholar
  14. 14.
    LESAGE B., HUNTZ A.M. and PETOT-ERVAS G., “Transport phenomena in undoped and chromium-or yttrium-doped alumina” — Radiation effects, 75, 283–299, (1983)CrossRefGoogle Scholar
  15. 15.
    BADROUR L., MOYA E.G., BERNARDINI J. and MOYA F., “Bulk diffusion of 110Ag tracer in Al2O3” — Scripta Met., 20, 1217–1222, (1986)CrossRefGoogle Scholar
  16. 16.
    OISHI Y., ANDO K. and MATSUHIRO K., “Self diffusion coefficient of oxygen in vapor-grown single crystal alumina” — Yogyo-Kyokai-Shi, 85, 54–56, (1977)Google Scholar
  17. 17.
    LAGERLOF K.P.D., MITCHELL T.E. and HEUER A.H., “Defect-dislocation interactions in sapphire (α-Al2O3)” — Solute defect interactions, Pergamon Press, Toronto Ont., 152–161, (1986)Google Scholar
  18. 18.
    HANEDA H. and MONTY C., “Oxygen self diffusion in Mg or Ti doped Al2O3 single crystals” — to be publishedGoogle Scholar
  19. 19.
    PHILLIPS D.S., MITCHELL T.E. and HEUER A.H. — Phil. Mag., 42, 417, (1980)CrossRefGoogle Scholar
  20. 20.
    ANDO K., KUROKAWA Y. and OISHI Y., “Oxygen self diffusion in Fedoped MgO single crystals” — J. Chem. Phys., 78, 6890–6892, (1983)CrossRefGoogle Scholar
  21. 21.
    LESAGE B., HUNTZ A.M., OCHIN P., SAADI B. and PETOT-ERVAS G., “Influence of chromium and yttrium doping on transport phenomena in monocrystalline alpha-alumina” — Solid State Ionics, 12, 243–251, (1984)CrossRefGoogle Scholar
  22. 22.
    SAADI B., PETOT-ERVAS, OCHIN D., LESAGE B., HUNTZ A.M., “Chemical diffusion in α alumina, titanium and yttrium influence” — Physical chemistry of the solid state: applications to metals and their compounds — Elsevier Science Publishers, Amsterdam, 389–395, (1984)Google Scholar
  23. 23.
    BEN ABDERRAZIK G., MILLOT F., MOULIN G. and HUNTZ A.M., “Determination of transport properties of alumina oxide scale” — J. of Am. Ceram. Soc., 68, 307–314, (1985)CrossRefGoogle Scholar
  24. 24.
    LOUDJANI M., HUNTZ A.M. and PETOT-ERVAS G., “Microstructure and transport properties of Y2O3 doped or undoped polycrystalline alumina in relation with its elaboration” — J. de Physique C1, 47, 323–328, (1986)Google Scholar
  25. 25.
    HUNTZ A.M., MOULIN G., BEN ABDERRAZIK G., “Influence des impuretés sur l’oxydation à haute température des alliages Fe-Cr-Al: propriétés de transport de la couche d’alumine” — Ann. Chim. Fr., 11, 291–307, (1986)Google Scholar
  26. 26.
    LOUDJANI M.K., ROY J. and HUNTZ A.M., “Study by extended X-ray absorption fine-structure technique and microscopy of the chemical state of yttrium in α-polycrystalline alumina” — J. Am. Ceram. Soc. 68, 559–562, (1985)CrossRefGoogle Scholar
  27. 27.
    LESAGE B., “Contribution à l’étude des mécanismes de transport dans l’oxyde de nickel NiO.et l’alumine Al2O3 alpha. Influence de dopants” — Thesis, Université Paris-Sud, centre d’Orsay (1985)Google Scholar
  28. 28.
    KORIPELLA C.R. and KROGER F.A., “Electrical conductivity, diffusion of iron and the defect structure of a-Al2O3: Fe” — J. Phys. Chem. Solids, 47, 565–576, (1986)CrossRefGoogle Scholar
  29. 29.
    LLOYD I. and BOWEN H.K., “Iron tracer diffusion in aluminium oxide” J. Amer. Ceram. Soc., 64, 744–747, (1981)CrossRefGoogle Scholar
  30. 30.
    DOSDALE T. and BROOK R.J., “Comparison of diffusion data and of activation energies” — J. of the Am. Ceram. Soc., 66, 392–395, (1983)CrossRefGoogle Scholar
  31. 31a.
    LE CLAIRE A.D. and RABINOVITCH A., “A mathematical analysis of diffusion in dislocations” — J. Phys. C: Solid State Phys., 14, 3863–3879 (1981)CrossRefGoogle Scholar
  32. 31b.
    LE CLAIRE A.D. and RABINOVITCH A., “A mathematical analysis of diffusion in dislocations” — J. Phys. C: Solid State Phys., 15, 3455–3471, (1982)CrossRefGoogle Scholar
  33. 31c.
    LE CLAIRE A.D. and RABINOVITCH A., “A mathematical analysis of diffusion in dislocations” — J. Phys. C: Solid State Phys., 16, 2087–2104, (1983)CrossRefGoogle Scholar
  34. 31d.
    LE CLAIRE A.D. and RABINOVITCH A., “A mathematical analysis of diffusion in dislocations” — J. Phys. C: Solid State Phys., 17, 991–1000, (1984)CrossRefGoogle Scholar
  35. 32.
    LE CLAIRE A.D., “The analysis of grain boundary diffusion measurements” — Brit. J. Appl. Phys., 14, 351, (1963)CrossRefGoogle Scholar
  36. 33.
    SUZUOKA T., “Exact solutions of two ideal cases in grain boundary diffusion problem and the application to sectioning method” — J. of the Phys. Soc. of Japan, 19, 839–850, (1964)CrossRefGoogle Scholar
  37. 34.
    MOYA E.G., BADROUR L., BERNARDINI J. and MOYA F., “Study of silver penetration into polycrystalline alumina” — Grain boundary structure at related phenomena, Proc. of JIMIS-4, Suppl. to Trans, of the Japan Institute of Metals, 27, 517–524, (1986)Google Scholar
  38. 35.
    BADROUR L., MOYA E.G., BERNARDINI J. and MOYA F., “Fast diffusion of silver in single and polycrystals of α-alumina” — to be publishedGoogle Scholar
  39. 36.
    MISTLER R.E. and COBLE R.L., “Grain boundary diffusion and boundary widths in metals and ceramics” — J. Appl. Phys., 45, 1507, (1974)CrossRefGoogle Scholar
  40. 37.
    LAGRANGE M.H., HUNTZ A.M., DAVIDSON J.H., “The influence of Y, Zr or Ti additions on the high temperature, oxidation resistance of Fe-Ni-Cr-Al alloys of variable purity” — Corros. Sci., 24,613,(1984)CrossRefGoogle Scholar
  41. 38.
    HART E.W. — Acta Metal., 5, 597, (1957)CrossRefGoogle Scholar
  42. 39.
    HOU L.D., TIKU S.K., WANG H.A. and KROGER F.A., “Conductivity and creep in acceptor-dominated polycrystalline Al2O3” — J. of Mat. Science, 14, 1877–1889, (1979)CrossRefGoogle Scholar
  43. 40.
    EL AIAT M.M., HOU L.D., TIKU S.K., WANG H.A. and KROGER F.A., “High temperature conductivity and creep of polycrystalline Al2O3 doped with Fe and/or Ti” — J. Am. Ceram. Soc., 64, 174–182, (1987)CrossRefGoogle Scholar
  44. 41.
    WANG H.A. and KROGER F.A., “Chemical diffusion in polycrystalline Al2O3” — J. Amer. Ceram. Soc., 63, 613–619, (1980)CrossRefGoogle Scholar
  45. 42.
    STUBICAN V.C. and OSENBACH J.W., “Influence of anisotropy and doping on grain boundary diffusion in oxide systems” — Solid State Ionics, 12, 375–381, (1984)CrossRefGoogle Scholar
  46. 43.
    LAGRANGE M.H., “Rôle des additions Y, Zr, Ti sur l’oxydation à haute température d’alliages Fe-Ni-Cr-Al. Relation entre la microstructure de l’alumine dopée ou non en Y et la diffusion cationique” Thèse 3ème cycle, Université Paris XI, Orsay (1982)Google Scholar
  47. 44.
    MARCUS H.L. and FINE M.E., “Grain boundary segregation in MgO-doped Al2O3” — J. Amer. Ceram. Soc., 55, 568–570, (1972)CrossRefGoogle Scholar
  48. 45.
    JOHNSON W.C. and STEIN D.F., “Additive and impurity distributions at grain boundaries in sintered alumina” — J. Amer. Ceram. Soc. 58, 485–488, (1975)CrossRefGoogle Scholar
  49. 46.
    JUPP R.S., STEIN D.F. and SMITH D.W., “Observations on the effect of calcium segregation on the fracture behaviour of polycrystalline alumina” — J. Mater. Sci., 15, 96–102, (1980)CrossRefGoogle Scholar
  50. 47.
    HONDROS E.D. and SEAH M.P., “The theory of grain boundary segregation in terms of surface adsorption analogues” — Met. Trans. A, 8A, 1363, (1977)CrossRefGoogle Scholar
  51. 48.
    MC LEAN D., Grain boundaries in Metals, Oxford University Press, London, 118–119, (1957)Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • E. Moya
    • 1
  • F. Moya
    • 1
  1. 1.Faculté des Sciences et Techniques-Centre St JérômeUniversité de Droit, d’Economie et des Sciences d’Aix-Marseille IIIMarseille Cedex 13France

Personalised recommendations