Oxygen Self Diffusion in Synthetic Rutile under Hydrothermal Conditions

  • P. F. Dennis
  • R. Freer
Part of the NATO ASI Series book series (ASIC, volume 276)


Oxygen self diffusion coefficients in a synthetic rutile crystal have been measured under hydrothermal conditions at 100MPa total water pressure in the temperature range 700–1100°C. The diffusion coefficients are lower than the results from dry gas studies would predict. The results can be represented by a linear Arrhenius relationship having Do(m2s−1) of 2.4 × 10−12 and ΔH of 172.5kJ mol−l. The experiments are interpreted in terms of a defect model involving dissolution of water in rutile as substitutional hydroxyl defects on oxygen lattice sites.


Oxygen Fugacity Hydrothermal Condition Extrinsic Defect Synthetic Rutile Binary Metal Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kofstad, P., Nonstoichiometry. Diffusion and Electrical Conductivity in Binary Metal Oxides, (Wiley Interscience, New York), 382 pp, (1972).Google Scholar
  2. 2.
    Matzke, Hj.,’Diffusion in nonstoichiometric oxides’, in Nonstoichiometric Oxides, ed. O. Toft Sorensen, (Academic Press, New York), 155–232, (1981).Google Scholar
  3. 3.
    Haul, R., and Dümbgen, G., Z. Elektrochem., 66, 636–641, (1962).Google Scholar
  4. 4.
    Haul, R., and Dümbgen, G., ‘Self diffusion of oxygen in rutile crystals’, J. Phys. Chem. Solids, 26, 1–10, (1965).CrossRefGoogle Scholar
  5. 5.
    Haul, R., Just, D., and Dümbgen, G., in Reactivity of Solids, Proc of the 4th International Symposium on the reactivity of solids, (Elsevier, Amsterdam), (1960).Google Scholar
  6. 6.
    Derry, D.J., Lees, D.G., and Calvert, J.M., ’A study of oxygen diffusion in titanium dioxide’, Proc Brit. Ceram. Soc., 19, 77–83, (1971).Google Scholar
  7. 7.
    Gruenwald, T.B., and Gordon, G., ’O xygen diffusion in single crystals of titanium dioxide’, J. Inorg. Nucl. Chem., 33, 1151–55, (1971).CrossRefGoogle Scholar
  8. 8.
    Arita, M., Hosoya, M., Kobayashi, M., and Someno, M., ’Depth profile measurement by secondary ion mass spectrometry for determining the tracer diffusivity of oxygen in rutile’, J. Amer, Ceram. Soc., 62, 443–446, (1979).CrossRefGoogle Scholar
  9. 9.
    Cathcart, J.V., Perkins, R.A., Bates, J.B., and Manley, L.C., ’Tritium diffusion in rutile’, J. Appl. Phys., 50, 4110–18, (1979).CrossRefGoogle Scholar
  10. 10.
    Freer, R., and Dennis, P.F., ’Oxygen diffusion studies, I: A preliminary ion microprobe investigation of oxgyen diffusion in some rock forming minerals’, Mineral. Mag., 45, 197–192, (1982).CrossRefGoogle Scholar
  11. 11.
    Wittmaack, K., ’DIDA – A multipurpose scanning ion microprobe’, in Proceedings 8th International Conference on X-ray Optics and Microanalysis, ed. by D. Beaman, R. Ogilvy, and D. Wittry, (Science, Princeton N.J.), 32–38, (1978).Google Scholar
  12. 12.
    Dennis, P.F. ’Oxygen self-diffusion in quartz under hydrothermal conditions’, J. Geophys. Res. (red), 89, 4047–57, (1984).CrossRefGoogle Scholar
  13. 13.
    Crank, J., The Mathematics of Diffusion, 2nd ed., (Oxford University Press, New York) 414 pp. (1975).Google Scholar
  14. 14.
    Colby, J.W., ’Ion microprobe mass analysis’, in Practical Scanning Electron Microscopy, ed. by J. I. Goldstein, and H. Yakowitz, (Plenum, New York) 529–572, (1975).Google Scholar
  15. 15.
    Kofstad, P., ’Note on the defect structure of rutile (TiO2)’, J. Less Common Mat., 13, 635–638, (1967).CrossRefGoogle Scholar
  16. 16.
    Hill, G.J., ’The effect of hydrogen on the electrical properties of rutile’, Br. J. Appl. Phys., Ser. 2, 1, 1151–62, (1968).Google Scholar
  17. 17.
    Stotz, S., and Wagner, C., Ber. Bunsenges. Physik. Chem., 70, 781–788, (1966).Google Scholar
  18. 18.
    Norby, T., and Kofstad, P., ’Electrical conductivity and defect structure of Y2O3 as a function of water vapour pressure’, J. Amer. Ceram. Soc., 67, 786–792, (1984).CrossRefGoogle Scholar
  19. 19.
    Shores, D.A. and Rapp, R.A, ’Hydrogen ion (proton) conduction in thoria base solid electrolytes’, J. Electrochem. Soc, 119, 300–305, (1972).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • P. F. Dennis
    • 1
  • R. Freer
    • 2
  1. 1.Dept. Geological SciencesUniversity College LondonLondonUK
  2. 2.Materials Science CentreUniversity of Manchester/UMISTManchesterUK

Personalised recommendations