Nuclear Techniques in Surface Studies of Ceramics

  • Hj. Matzke
Part of the NATO ASI Series book series (ASIC, volume 276)


Nuclear techniques applying energetic ion beams to study structural defects, surfaces and near surface changes in non-stoichiometric ceramics are described. Most examples are for uranium oxide and nitride and for titanates. New results on leaching of UO2, formation of U3O7, leaching of SYNROC and radiation damage effects due to ion implantation of UO2 and UN are treated. The techniques described in detail are Rutherford backscattering, RBS (with and without channeling), nuclear reactions such as 23Na(p,α)20Ne, elastic recoil deflection analysis, ERDA and high resolution α-spectroscopy. Elements between H and actinides and gradients in their concentration near surfaces can easily and accurately be measured.


Nuclear Reaction Uranium Oxide Rutherford Backscattering Nuclear Technique Nonstoichiometric Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Modem Nuclear Methods in Materials Science, Eds. M.J. Fluss and Y.C. Yean, Mater. Sci. Forum 2 (1984)Google Scholar
  2. 2).
    Ion Beam Analysis, Eds. J.P. Biersack and K. Wittmaack, Nucl. Instr. Methods in Phys. Research, spec. vol. B 15 (1986)Google Scholar
  3. 3).
    Hj. Matzke, in Proc. Int. Conf. Transport in Nonstoichiometric Compounds, Ed. J. Nowotny, North Holland, Elsevier, Mater. Sci. Monographs 15 (1982) 203Google Scholar
  4. 4).
    Hj. Matzke, in Transport in Nonstoichiometric Compounds, Eds. G. Petot-Ervas, Hj. Matzke and C. Monty, North Holland, Spec. Vol. Sol. State Ionics 12 (1984) 25Google Scholar
  5. 5).
    Hj. Matzke, in Transport in Nonstoichiometric Compounds, Eds. G. Simkovitch and V.S. Stubican, Plenum Publ. Corp. (1985) p. 331Google Scholar
  6. 6).
    Hj. Matzke, in Nonstoichiometric Compounds, Eds. R.A. Catlow and J. Harding, Advances in Ceramics 23 (1987) 617Google Scholar
  7. 7).
    W.K. Chu, J. W. Mayer and M.A. Nicolet, Backscattering Spectrometry, Academic Press, N.Y. (1978)Google Scholar
  8. 8).
    Hj. Matzke, Fresenius Z. Anal. Chem., 319 (1984) 801CrossRefGoogle Scholar
  9. 9).
    J.F. Ziegler et al., Nucl. Instrum. Methods 149 (1978) 19CrossRefGoogle Scholar
  10. 10).
    B.L. Doyle and P.S. Peercy, Appl. Phys. Letters 34 (1979) 811CrossRefGoogle Scholar
  11. 11).
    A. Turos and O. Meyer, Nucl. Instrum. Methods B4 (1984) 92Google Scholar
  12. 12).
    P. Trocellier, B. Nens and Ch. Engelmann, Nucl. Instrum. Methods 197 (1982) 15CrossRefGoogle Scholar
  13. 13).
    G. Battaglin, G. Della Mea, G. De Marchi, P. Mazzoldi and D. Puglisi, Radiation Effects 64 (1982) 99CrossRefGoogle Scholar
  14. 14).
    Hj. Matzke, J.A. Davies and N.G.E. Johansson, Can. J. Phys. 49 (1971) 2215Google Scholar
  15. 15).
    Hj. Matzke and G. Linker, unpublished resultsGoogle Scholar
  16. 16).
    J.A. Cookson, A.T.G. Ferguson and F.D. Pilling, J. Radioanal. Chem. 12 (1972) 39CrossRefGoogle Scholar
  17. 17).
    R. Nobiling, Nucl. Instrum. Methods 218 (1983) 197Google Scholar
  18. 18).
    D. Heck, Atomkernenergie — Kerntechnik 46 (1985) 187Google Scholar
  19. 19a).
    B.T.M. Willis, Nature 167 (1963) 153Google Scholar
  20. 19b).
    B.T.M. Willis, Proc. Roy. Soc. A 274 (1963) 122Google Scholar
  21. 19c).
    B.T.M. Willis, Proc. Roy. Soc. A 274 (1963) 134Google Scholar
  22. 19d).
    B.T.M. Willis, J. Phys. Fr. 25 (1964) 431CrossRefGoogle Scholar
  23. 19e).
    B.T.M. Willis, Proc. Brit. Ceram. Soc. 1 (1964) 9Google Scholar
  24. 20).
    Hj. Matzke, A. Turos and P. Rabette, Radiation Effects 65 (1982) 1CrossRefGoogle Scholar
  25. 21).
    A. Turos, Hj. Matzke and P. Rabette, Phys. Stat. Sol. (a) 64 (1981) 585CrossRefGoogle Scholar
  26. 22).
    A. Turos, O. Meyer and Hj. Matzke, Appl. Phys. Letters 38 (1981) 910CrossRefGoogle Scholar
  27. 23).
    A.E. Ringwood, Safe disposal of high level nuclear reactor waste: a new strategy, Austral. Nat. Univ. Press, Canberra, Austr., and Norwalk, Conn., USA (1978)Google Scholar
  28. 24).
    Hj. Matzke, J.C. Dran and A. Solomah, unpublished resultsGoogle Scholar
  29. 25).
    Hj. Matzke, E. Toscano, C.T. Walker and A.G. Solomah, Advanced Ceram. Mater. 3 (1988) 285Google Scholar
  30. 26).
    G. Della Mea, V. Rigato and Hj. Matzke, unpublished resultsGoogle Scholar
  31. 27).
    Hj. Matzke, Radiation Effects 53 (1980) 219CrossRefGoogle Scholar
  32. 28).
    Hj. Matzke, A. Turos and S. Fritz, to be reported at Int. Conf. Lattice Defects in Insulating Crystals, Parma, Italy (1988)Google Scholar
  33. 29).
    G.H. Kinchin and R.F. Pease, Rep. Progr. Phys. 18 (1955) 1658CrossRefGoogle Scholar
  34. 30).
    Hj. Matzke, S. Fritz and A. Turos, unpublished results, and S. Fritz, PhD Thesis to be submitted at Université de Strasbourg (1988)Google Scholar
  35. 31).
    D.W. Shoesmith, S. Sunder, M.G. Bailey, G.I. Wallace and L.H. Johnson, 36. Meeting Int. Soc. Electrochem., Salamanca, Spain Abstr. 06240 (1985)Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Hj. Matzke
    • 1
  1. 1.Joint Research Centre, Karlsruhe Establishment, European Institute for Transuranium ElementsCommission of the European CommunitiesKarlsruheFederal Republic of Germany

Personalised recommendations