ZnO Interface Electrical Properties-Role of Oxygen Chemisorption

  • Mary H. Sukkar
  • Harry L. Tuller
Part of the NATO ASI Series book series (ASIC, volume 276)


In the present studies single ZnO grain boundary or electrode interfaces are isolated and examined as a function of dopant, temperature, atmosphere, and potential. ZnO-Ag junctions were found to be rectifying but with marked sensitivity to ambient conditions (T, Po2) and applied bias. The I(V) characteristics were examined in relation to the predictions of Sze for a metal-semiconductor junction in which both interface states and the nature of the metal influence the barrier height. Reasonable surface state densities are obtained by application of the model to our data. Difficulties associated with the derivation of thick interfacial layers are discussed. The existence of volatile surface states is confirmed by examination of atmosphere and voltage induced transients in barrier height. Manganese and manganese/praseodymium doped grain boundaries are characterized by varistor-like behavior with 3–4 volt breakdown and nonlinearity factor of three. The apparent non-activated behavior of the leakage current was traced to a strong temperature dependent barrier height characterized by ∂ϕB/∂T = 1.5 × 10−3 eV/k, a result of absorbed oxygen at the boundary.


Barrier Height Interfacial Layer Schottky Barrier Reverse Bias Forward Bias 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.G. Morris, J. Vac. Sci. Technol. 13 926 (1976).CrossRefGoogle Scholar
  2. 2.
    F.A. Selim, T.K. Gupta, P.L. Hower, and W.G. Carlson, J. Appl. Phys. 51 765 (1980).CrossRefGoogle Scholar
  3. 3.
    R. Salmon, J.P. Bonnet, M. Graciet, M. Onillon, and P. Hagenmuller, Solid State Commun. 34 301 (1980).CrossRefGoogle Scholar
  4. 4.
    G. Heiland, and P. Kunstmann, Surf. Sci., 13 72 (1969).CrossRefGoogle Scholar
  5. 5.
    Y. Margoninski, Surf. Sci., 94 L167 (1980).CrossRefGoogle Scholar
  6. 6.
    H. Watanabe, M. Wada, and T. Takahashi, Jpn. J. Appl. Phys., 4 945 (1965).CrossRefGoogle Scholar
  7. 7.
    A. Cimino, E. Molinari, and F. Cramarossa, J. Catal., 2 315 (1963)CrossRefGoogle Scholar
  8. 8.
    M.A. Seitz, F. Hampton, and W.C. Richmond, Advances in Ceramics, 7 60 (1983)Google Scholar
  9. 9.
    A.P. Roth and D.F. Williams, J. Appl. Phys., 52 6685 (1981).CrossRefGoogle Scholar
  10. 10.
    K. Takahashi, T. Miyoshi, K. Maeda, and T. Yamazaki, in Grain Boundaries in Semiconductors, ed. by G.E. Pike, C.H. Seager, and H.J. Leamy, Elsevier, 1982, pp. 399–404.Google Scholar
  11. 11.
    H.R. Philipp and L.M. Levinson, Advances in Ceramics, 7 1 (1983).Google Scholar
  12. 12.
    R. Dorn and H. Luth, Surf. Sci., 68 385 (1977).CrossRefGoogle Scholar
  13. 13.
    W. Gopel, Surf. Sci., 62 165 (1977).CrossRefGoogle Scholar
  14. 14.
    W. Gopel, J. Vac. Sci. Technol., 15 1298 (1976).CrossRefGoogle Scholar
  15. 15.
    M. Iwamoto, Y. Yoda, N. Yamazoe, and T. Selyama, J. Phys. Chem., 62 2564 (1978).CrossRefGoogle Scholar
  16. 16.
    J.E. Cope and I.D. Campbell, J. Chem. Soc. Farad. Trans. 1, 69 1 (1973).CrossRefGoogle Scholar
  17. 17.
    A.J. Tench and T. Lawson, Chem. Phys. Lett., 8 177 (1971).CrossRefGoogle Scholar
  18. 18.
    M. Codell, J. Weisberg, H. Gisser, and R.D. Iyengar, J. Am. Chem. Soc., 91 7762 (1969)CrossRefGoogle Scholar
  19. 19.
    G. Neumann, Phys. Stat. Sol. (b), 105 605 (1981).CrossRefGoogle Scholar
  20. 20.
    D. Eger, Y. Goldstein, and A. Many, RCA Review, 36 508 (1975).Google Scholar
  21. 21.
    K.I. Tanaka and G. Blyholder, J. Phys. Chem., 76 3184 (1972).CrossRefGoogle Scholar
  22. 22.
    S.A. Hoenig and J.R. Lanem, Surf. Sci., 11 163 (1968).CrossRefGoogle Scholar
  23. 23.
    G. Heiland, Z. Phys., 148 15 (1957).CrossRefGoogle Scholar
  24. 24.
    K. Ito, Surf. Sci., 86 345 (1979).CrossRefGoogle Scholar
  25. 25.
    C.A. Mead, Solid State Electron, 9 1023 (1966).CrossRefGoogle Scholar
  26. 26.
    Sze, S.M., Physics of Semiconductor Devices, 2nd ed., Ch. 5 (“Metal-Semiconductor Contacts”), John-Wiley and Sons, Inc., 1981.Google Scholar
  27. 27a.
    H.C. Card and E.H. Rhoderick, J. Phys. D: Appl. Phys., 4 1589 (1971);CrossRefGoogle Scholar
  28. 27b.
    E.H. Rhoderick, in Metal-Semiconductor Contacts, The Institute of Physics, 1974, pp. 3–19.Google Scholar
  29. 28.
    G.E. Pike and C.H. Seager, J. Appl. Phys. 50 3414 (1979).CrossRefGoogle Scholar
  30. 29.
    Y. Mariyoshi, S. Shirasaki, H. Ooshima, T. Tsutsumi, and I. Shindo, Kristall und Tecknik, 13 1225 (1978).CrossRefGoogle Scholar
  31. 30.
    H. Dietz, Solid State Ionics, 6 175 (1982).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Mary H. Sukkar
    • 1
  • Harry L. Tuller
    • 1
  1. 1.Crystal Physics & Optical Electronics Laboratory, Department of Materials Science & EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations